Junlin Yang , John Anderson Garcia Henao , Nicha Dvornek , Jianchun He , Danielle V. Bower , Arno Depotter , Herkus Bajercius , Aurélie Pahud de Mortanges , Chenyu You , Christopher Gange , Roberta Eufrasia Ledda , Mario Silva , Charles S. Dela Cruz , Wolf Hautz , Harald M. Bonel , Mauricio Reyes , Lawrence H. Staib , Alexander Poellinger , James S. Duncan
{"title":"Prior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week","authors":"Junlin Yang , John Anderson Garcia Henao , Nicha Dvornek , Jianchun He , Danielle V. Bower , Arno Depotter , Herkus Bajercius , Aurélie Pahud de Mortanges , Chenyu You , Christopher Gange , Roberta Eufrasia Ledda , Mario Silva , Charles S. Dela Cruz , Wolf Hautz , Harald M. Bonel , Mauricio Reyes , Lawrence H. Staib , Alexander Poellinger , James S. Duncan","doi":"10.1016/j.compmedimag.2024.102442","DOIUrl":null,"url":null,"abstract":"<div><div>Data-driven approaches have achieved great success in various medical image analysis tasks. However, fully-supervised data-driven approaches require unprecedentedly large amounts of labeled data and often suffer from poor generalization to unseen new data due to domain shifts. Various unsupervised domain adaptation (UDA) methods have been actively explored to solve these problems. Anatomical and spatial priors in medical imaging are common and have been incorporated into data-driven approaches to ease the need for labeled data as well as to achieve better generalization and interpretation. Inspired by the effectiveness of recent transformer-based methods in medical image analysis, the adaptability of transformer-based models has been investigated. How to incorporate prior knowledge for transformer-based UDA models remains under-explored. In this paper, we introduce a prior knowledge-guided and transformer-based unsupervised domain adaptation (PUDA) pipeline. It regularizes the vision transformer attention heads using anatomical and spatial prior information that is shared by both the source and target domain, which provides additional insight into the similarity between the underlying data distribution across domains. Besides the global alignment of class tokens, it assigns local weights to guide the token distribution alignment via adversarial training. We evaluate our proposed method on a clinical outcome prediction task, where Computed Tomography (CT) and Chest X-ray (CXR) data are collected and used to predict the intubation status of patients in a week. Abnormal lesions are regarded as anatomical and spatial prior information for this task and are annotated in the source domain scans. Extensive experiments show the effectiveness of the proposed PUDA method.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102442"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001198","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven approaches have achieved great success in various medical image analysis tasks. However, fully-supervised data-driven approaches require unprecedentedly large amounts of labeled data and often suffer from poor generalization to unseen new data due to domain shifts. Various unsupervised domain adaptation (UDA) methods have been actively explored to solve these problems. Anatomical and spatial priors in medical imaging are common and have been incorporated into data-driven approaches to ease the need for labeled data as well as to achieve better generalization and interpretation. Inspired by the effectiveness of recent transformer-based methods in medical image analysis, the adaptability of transformer-based models has been investigated. How to incorporate prior knowledge for transformer-based UDA models remains under-explored. In this paper, we introduce a prior knowledge-guided and transformer-based unsupervised domain adaptation (PUDA) pipeline. It regularizes the vision transformer attention heads using anatomical and spatial prior information that is shared by both the source and target domain, which provides additional insight into the similarity between the underlying data distribution across domains. Besides the global alignment of class tokens, it assigns local weights to guide the token distribution alignment via adversarial training. We evaluate our proposed method on a clinical outcome prediction task, where Computed Tomography (CT) and Chest X-ray (CXR) data are collected and used to predict the intubation status of patients in a week. Abnormal lesions are regarded as anatomical and spatial prior information for this task and are annotated in the source domain scans. Extensive experiments show the effectiveness of the proposed PUDA method.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.