Sonia Zouari, Farman Ali, Atef Masmoudi, Sarah Abu Ghazalah, Wajdi Alghamdi, Faris A. Kateb, Nouf Ibrahim
{"title":"Deep-GB: A novel deep learning model for globular protein prediction using CNN-BiLSTM architecture and enhanced PSSM with trisection strategy","authors":"Sonia Zouari, Farman Ali, Atef Masmoudi, Sarah Abu Ghazalah, Wajdi Alghamdi, Faris A. Kateb, Nouf Ibrahim","doi":"10.1049/syb2.12108","DOIUrl":null,"url":null,"abstract":"<p>Globular proteins (GPs) play vital roles in a wide range of biological processes, encompassing enzymatic catalysis and immune responses. Enzymes, among these globular proteins, facilitate biochemical reactions, while others, such as haemoglobin, contribute to essential physiological functions such as oxygen transport. Given the importance of these considerations, accurately identifying Globular proteins is essential. To address the need for precise GP identification, this research introduces an innovative approach that employs a hybrid-based deep learning model called Deep-GP. We generated two datasets based on primary sequences and developed a novel feature descriptor called, Consensus Sequence-based Trisection-Position Specific Scoring Matrix (CST-PSSM). The model training phase involved the application of deep learning techniques, including the bidirectional long short-term memory network (BiLSTM), gated recurrent unit (GRU), and convolutional neural network (CNN). The BiLSTM and CNN were hybridised for ensemble learning. The CST-PSSM-based ensemble model achieved the most accurate predictive outcomes, outperforming other competitive predictors across both training and testing datasets. This demonstrates the potential of harnessing deep learning for precise GB prediction as a robust tool to expedite research, streamline drug discovery, and unveil novel therapeutic targets.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"18 6","pages":"208-217"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Globular proteins (GPs) play vital roles in a wide range of biological processes, encompassing enzymatic catalysis and immune responses. Enzymes, among these globular proteins, facilitate biochemical reactions, while others, such as haemoglobin, contribute to essential physiological functions such as oxygen transport. Given the importance of these considerations, accurately identifying Globular proteins is essential. To address the need for precise GP identification, this research introduces an innovative approach that employs a hybrid-based deep learning model called Deep-GP. We generated two datasets based on primary sequences and developed a novel feature descriptor called, Consensus Sequence-based Trisection-Position Specific Scoring Matrix (CST-PSSM). The model training phase involved the application of deep learning techniques, including the bidirectional long short-term memory network (BiLSTM), gated recurrent unit (GRU), and convolutional neural network (CNN). The BiLSTM and CNN were hybridised for ensemble learning. The CST-PSSM-based ensemble model achieved the most accurate predictive outcomes, outperforming other competitive predictors across both training and testing datasets. This demonstrates the potential of harnessing deep learning for precise GB prediction as a robust tool to expedite research, streamline drug discovery, and unveil novel therapeutic targets.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.