Early identification of children with Attention-Deficit/Hyperactivity Disorder (ADHD).

PLOS digital health Pub Date : 2024-11-07 eCollection Date: 2024-11-01 DOI:10.1371/journal.pdig.0000620
Yang S Liu, Fernanda Talarico, Dan Metes, Yipeng Song, Mengzhe Wang, Lawrence Kiyang, Dori Wearmouth, Shelly Vik, Yifeng Wei, Yanbo Zhang, Jake Hayward, Ghalib Ahmed, Ashley Gaskin, Russell Greiner, Andrew Greenshaw, Alex Alexander, Magdalena Janus, Bo Cao
{"title":"Early identification of children with Attention-Deficit/Hyperactivity Disorder (ADHD).","authors":"Yang S Liu, Fernanda Talarico, Dan Metes, Yipeng Song, Mengzhe Wang, Lawrence Kiyang, Dori Wearmouth, Shelly Vik, Yifeng Wei, Yanbo Zhang, Jake Hayward, Ghalib Ahmed, Ashley Gaskin, Russell Greiner, Andrew Greenshaw, Alex Alexander, Magdalena Janus, Bo Cao","doi":"10.1371/journal.pdig.0000620","DOIUrl":null,"url":null,"abstract":"<p><p>Signs and symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD) are present at preschool ages and often not identified for early intervention. We aimed to use machine learning to detect ADHD early among kindergarten-aged children using population-level administrative health data and a childhood developmental vulnerability surveillance tool: Early Development Instrument (EDI). The study cohort consists of 23,494 children born in Alberta, Canada, who attended kindergarten in 2016 without a diagnosis of ADHD. In a four-year follow-up period, 1,680 children were later identified with ADHD using case definition. We trained and tested machine learning models to predict ADHD prospectively. The best-performing model using administrative and EDI data could reliably predict ADHD and achieved an Area Under the Curve (AUC) of 0.811 during cross-validation. Key predictive factors included EDI subdomain scores, sex, and socioeconomic status. Our findings suggest that machine learning algorithms that use population-level surveillance data could be a valuable tool for early identification of ADHD.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000620"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signs and symptoms of Attention-Deficit/Hyperactivity Disorder (ADHD) are present at preschool ages and often not identified for early intervention. We aimed to use machine learning to detect ADHD early among kindergarten-aged children using population-level administrative health data and a childhood developmental vulnerability surveillance tool: Early Development Instrument (EDI). The study cohort consists of 23,494 children born in Alberta, Canada, who attended kindergarten in 2016 without a diagnosis of ADHD. In a four-year follow-up period, 1,680 children were later identified with ADHD using case definition. We trained and tested machine learning models to predict ADHD prospectively. The best-performing model using administrative and EDI data could reliably predict ADHD and achieved an Area Under the Curve (AUC) of 0.811 during cross-validation. Key predictive factors included EDI subdomain scores, sex, and socioeconomic status. Our findings suggest that machine learning algorithms that use population-level surveillance data could be a valuable tool for early identification of ADHD.

早期识别患有注意力缺陷/多动症(ADHD)的儿童。
注意力缺陷/多动障碍(ADHD)的体征和症状在学龄前就已出现,但往往无法识别,无法进行早期干预。我们的目标是利用人口一级的行政健康数据和儿童发育脆弱性监测工具,使用机器学习来早期检测幼儿园学龄儿童的多动症:早期发展工具(EDI)。研究队列由 23,494 名出生于加拿大艾伯塔省的儿童组成,这些儿童于 2016 年进入幼儿园,但未被诊断出患有多动症。在为期四年的随访中,有 1680 名儿童后来通过病例定义被确定患有多动症。我们对机器学习模型进行了训练和测试,以便对多动症进行前瞻性预测。使用管理数据和 EDI 数据的最佳模型可以可靠地预测多动症,在交叉验证中的曲线下面积 (AUC) 达到了 0.811。主要预测因素包括 EDI 子域得分、性别和社会经济地位。我们的研究结果表明,使用人群监测数据的机器学习算法可以成为早期识别多动症的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信