ADAPT: Analysis of Microbiome Differential Abundance by Pooling Tobit Models.

Mukai Wang, Simon Fontaine, Hui Jiang, Gen Li
{"title":"ADAPT: Analysis of Microbiome Differential Abundance by Pooling Tobit Models.","authors":"Mukai Wang, Simon Fontaine, Hui Jiang, Gen Li","doi":"10.1093/bioinformatics/btae661","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Microbiome differential abundance analysis (DAA) remains a challenging problem despite multiple methods proposed in the literature. The excessive zeros and compositionality of metagenomics data are two main challenges for DAA.</p><p><strong>Results: </strong>We propose a novel method called \"Analysis of Microbiome Differential Abundance by Pooling Tobit Models\" (ADAPT) to overcome these two challenges. ADAPT interprets zero counts as left-censored observations to avoid unfounded assumptions and complex models. ADAPT also encompasses a theoretically justified way of selecting non-differentially abundant microbiome taxa as a reference to reveal differentially abundant taxa while avoiding false discoveries. We generate synthetic data using independent simulation frameworks to show that ADAPT has more consistent false discovery rate control and higher statistical power than competitors. We use ADAPT to analyze 16S rRNA sequencing of saliva samples and shotgun metagenomics sequencing of plaque samples collected from infants in the COHRA2 study. The results provide novel insights into the association between the oral microbiome and early childhood dental caries.</p><p><strong>Availability and implementation: </strong>The R package ADAPT can be installed from Bioconductor at https://bioconductor.org/packages/release/bioc/html/ADAPT.html or from Github at https://github.com/mkbwang/ADAPT. The source codes for simulation studies and real data analysis are available at https://github.com/mkbwang/ADAPT_example.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Microbiome differential abundance analysis (DAA) remains a challenging problem despite multiple methods proposed in the literature. The excessive zeros and compositionality of metagenomics data are two main challenges for DAA.

Results: We propose a novel method called "Analysis of Microbiome Differential Abundance by Pooling Tobit Models" (ADAPT) to overcome these two challenges. ADAPT interprets zero counts as left-censored observations to avoid unfounded assumptions and complex models. ADAPT also encompasses a theoretically justified way of selecting non-differentially abundant microbiome taxa as a reference to reveal differentially abundant taxa while avoiding false discoveries. We generate synthetic data using independent simulation frameworks to show that ADAPT has more consistent false discovery rate control and higher statistical power than competitors. We use ADAPT to analyze 16S rRNA sequencing of saliva samples and shotgun metagenomics sequencing of plaque samples collected from infants in the COHRA2 study. The results provide novel insights into the association between the oral microbiome and early childhood dental caries.

Availability and implementation: The R package ADAPT can be installed from Bioconductor at https://bioconductor.org/packages/release/bioc/html/ADAPT.html or from Github at https://github.com/mkbwang/ADAPT. The source codes for simulation studies and real data analysis are available at https://github.com/mkbwang/ADAPT_example.

ADAPT:通过汇集 Tobit 模型分析微生物组的丰度差异。
动机:尽管文献中提出了多种方法,微生物组差异丰度分析仍然是一个具有挑战性的问题。元基因组学数据中过多的零和组成是差异丰度分析面临的两大挑战:结果:我们提出了一种名为 "通过池化托比特模型分析差异丰度"(ADAPT)的新方法来克服这两大难题。ADAPT 将零计数解释为左删失观测值,以避免毫无根据的假设和复杂的模型。ADAPT 还包括一种理论上合理的方法,即选择非差异丰度微生物群类群作为参照,以揭示差异丰度类群,同时避免错误发现。我们使用独立的模拟框架生成合成数据,结果表明 ADAPT 与竞争对手相比,具有更稳定的错误发现率控制和更高的统计能力。我们使用 ADAPT 分析了 COHRA2 研究中收集的婴儿唾液样本的 16S rRNA 测序和牙菌斑样本的散弹枪元基因组测序。结果为口腔微生物组与儿童早期龋齿之间的关联提供了新的见解:R 软件包 ADAPT 可从 Bioconductor https://bioconductor.org/packages/release/bioc/html/ADAPT.html 或 Github https://github.com/mkbwang/ADAPT 安装。模拟研究和真实数据分析的源代码可从 https://github.com/mkbwang/ADAPT_example.Supplementary 信息中获取:补充说明和图表汇编成 PDF 文档。补充表格合并在一个 excel 文件中。PDF 文档和 excel 文件均可在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信