Carolin Offenhäuser, Keyur A Dave, Kirrilee J Beckett, Fiona M Smith, Buddhika A Jayakody, Leanne T Cooper, Helen Agyei-Yeboah, Jennifer K McCarron, Yuchen Li, Kate Bastick, Fares Al-Ejeh, Jason K Cullen, Mark G Coulthard, Jeffrey J Gorman, Andrew W Boyd, Bryan W Day
{"title":"EphA2 regulates vascular permeability and prostate cancer metastasis via modulation of cell junction protein phosphorylation.","authors":"Carolin Offenhäuser, Keyur A Dave, Kirrilee J Beckett, Fiona M Smith, Buddhika A Jayakody, Leanne T Cooper, Helen Agyei-Yeboah, Jennifer K McCarron, Yuchen Li, Kate Bastick, Fares Al-Ejeh, Jason K Cullen, Mark G Coulthard, Jeffrey J Gorman, Andrew W Boyd, Bryan W Day","doi":"10.1038/s41388-024-03206-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer morbidity and mortality demonstrate a need for more effective targeted therapies. One potential target is EphA2, although paradoxically, pro- and anti-oncogenic effects have been shown to be mediated by EphA2. We demonstrate that unique activating and blocking EphA2-targeting monoclonal antibodies display opposing tumor-suppressive and oncogenic properties in vivo. To further explore this complexity, we performed detailed phosphoproteomic analysis following ligand-induced EphA2 activation. Our analysis identified altered phosphorylation of 73 downstream proteins related to the PI3K/AKT/mTOR and ERK/MAPK pathways, with the majority implicated in cell junction and cytoskeletal organization, cell motility, and tumor metastasis. We demonstrate that the adapter protein SHB is an essential component in mediating the inhibition of the ERK/MAPK pathway in response to EphA2 receptor activation. Furthermore, we identify the adherence junction protein afadin as an EphA2-regulated phosphoprotein which is involved in prostate cancer migration and invasion.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03206-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer morbidity and mortality demonstrate a need for more effective targeted therapies. One potential target is EphA2, although paradoxically, pro- and anti-oncogenic effects have been shown to be mediated by EphA2. We demonstrate that unique activating and blocking EphA2-targeting monoclonal antibodies display opposing tumor-suppressive and oncogenic properties in vivo. To further explore this complexity, we performed detailed phosphoproteomic analysis following ligand-induced EphA2 activation. Our analysis identified altered phosphorylation of 73 downstream proteins related to the PI3K/AKT/mTOR and ERK/MAPK pathways, with the majority implicated in cell junction and cytoskeletal organization, cell motility, and tumor metastasis. We demonstrate that the adapter protein SHB is an essential component in mediating the inhibition of the ERK/MAPK pathway in response to EphA2 receptor activation. Furthermore, we identify the adherence junction protein afadin as an EphA2-regulated phosphoprotein which is involved in prostate cancer migration and invasion.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.