Glioma-Astrocyte connexin43 confers temozolomide resistance through activation of the E2F1/ERCC1 axis.

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yanping Gui, Hongkun Qin, Xinyu Zhang, Qianqian Chen, Fangyu Ye, Geng Tian, Shihe Yang, Yuting Ye, Di Pan, Jieying Zhou, Xiangshan Fan, Yajing Wang, Li Zhao
{"title":"Glioma-Astrocyte connexin43 confers temozolomide resistance through activation of the E2F1/ERCC1 axis.","authors":"Yanping Gui, Hongkun Qin, Xinyu Zhang, Qianqian Chen, Fangyu Ye, Geng Tian, Shihe Yang, Yuting Ye, Di Pan, Jieying Zhou, Xiangshan Fan, Yajing Wang, Li Zhao","doi":"10.1093/neuonc/noae237","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioma is the most prevalent and lethal tumor of the central nervous system. Routine treatment with Temozolomide (TMZ) would unfortunately result in inevitable recurrence and therapy resistance, severely limiting therapeutic efficacy. Tumor associated astrocytes (TAAs) are key components of the tumor microenvironment and increasing evidence has demonstrated that aberrant expression of Connexin43 (Cx43) was closely associated with glioma progression and TMZ resistance. However, the specific role of Cx43 in mediating TMZ resistance through glioma and astrocyte interactions has not been fully explored.</p><p><strong>Methods: </strong>The expression and prognostic value of Cx43 were evaluated in tumor samples and clinical databases. ShRNA-medicated knockdown and Gfap-Cre Cx43flox/flox gene mouse were used to assessed the role and functional significance of Cx43 in vitro and in vivo. Moreover, we performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which Cx43 promotes TMZ resistance.</p><p><strong>Results: </strong>We confirmed that upregulation of Cx43 expression between TAAs and glioma cells contributed to TMZ resistance and tumor recurrence. Genetic knockdown or pharmacological inhibition of Cx43 enhanced TMZ-induced cytotoxicity. Mechanistically, elevated Cx43 expression induced β-catenin accumulation at the cell surface of glioma cells, suppressing TCF/LEF transcription, This led to impaired miR-205-5p expression and subsequent activation of E2F1/ERCC1 axis, which eventually led to chemoresistance.</p><p><strong>Conclusions: </strong>Our study reveals a novel regulatory mechanism in which the Cx43/miR-205-5p/E2F1/ERCC1 axis contributes to TMZ resistance in glioma. These findings further highlight the potential of targeting Cx43 as a therapeutic strategy in glioma.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae237","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioma is the most prevalent and lethal tumor of the central nervous system. Routine treatment with Temozolomide (TMZ) would unfortunately result in inevitable recurrence and therapy resistance, severely limiting therapeutic efficacy. Tumor associated astrocytes (TAAs) are key components of the tumor microenvironment and increasing evidence has demonstrated that aberrant expression of Connexin43 (Cx43) was closely associated with glioma progression and TMZ resistance. However, the specific role of Cx43 in mediating TMZ resistance through glioma and astrocyte interactions has not been fully explored.

Methods: The expression and prognostic value of Cx43 were evaluated in tumor samples and clinical databases. ShRNA-medicated knockdown and Gfap-Cre Cx43flox/flox gene mouse were used to assessed the role and functional significance of Cx43 in vitro and in vivo. Moreover, we performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which Cx43 promotes TMZ resistance.

Results: We confirmed that upregulation of Cx43 expression between TAAs and glioma cells contributed to TMZ resistance and tumor recurrence. Genetic knockdown or pharmacological inhibition of Cx43 enhanced TMZ-induced cytotoxicity. Mechanistically, elevated Cx43 expression induced β-catenin accumulation at the cell surface of glioma cells, suppressing TCF/LEF transcription, This led to impaired miR-205-5p expression and subsequent activation of E2F1/ERCC1 axis, which eventually led to chemoresistance.

Conclusions: Our study reveals a novel regulatory mechanism in which the Cx43/miR-205-5p/E2F1/ERCC1 axis contributes to TMZ resistance in glioma. These findings further highlight the potential of targeting Cx43 as a therapeutic strategy in glioma.

胶质瘤-星形胶质细胞Connexin43通过激活E2F1/ERCC1轴赋予替莫唑胺抗药性
背景:胶质瘤是中枢神经系统中最常见、最致命的肿瘤。不幸的是,使用替莫唑胺(TMZ)进行常规治疗会导致不可避免的复发和耐药性,严重限制了疗效。肿瘤相关星形胶质细胞(TAA)是肿瘤微环境的关键组成部分,越来越多的证据表明,Connexin43(Cx43)的异常表达与胶质瘤的进展和TMZ耐药性密切相关。然而,Cx43在通过胶质瘤和星形胶质细胞相互作用介导TMZ耐药性方面的具体作用尚未得到充分探讨:方法:在肿瘤样本和临床数据库中评估了Cx43的表达和预后价值。采用 ShRNA 药物敲除和 Gfap-Cre Cx43flox/flox 基因小鼠来评估 Cx43 在体外和体内的作用和功能意义。此外,我们还进行了质谱分析、染色质免疫沉淀和其他生化检测,以明确Cx43促进TMZ耐药性的分子机制:结果:我们证实,TAAs和胶质瘤细胞之间的Cx43表达上调导致了TMZ耐药和肿瘤复发。基因敲除或药物抑制Cx43可增强TMZ诱导的细胞毒性。从机制上讲,Cx43表达的升高诱导了β-catenin在胶质瘤细胞表面的积累,抑制了TCF/LEF的转录,这导致了miR-205-5p的表达受损,随后激活了E2F1/ERCC1轴,最终导致了化疗耐药:我们的研究揭示了一种新的调控机制,在这一机制中,Cx43/miR-205-5p/E2F1/ERCC1轴导致了胶质瘤对TMZ的耐药性。这些发现进一步凸显了以Cx43为靶点作为胶质瘤治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信