Fei Wang, Chong Yuan, Yi Lu, Mojiao Wu, Hezhen Wu, Yifei Liu, Yanfang Yang
{"title":"Glabridin inhibits proliferation and migration in hepatocellular carcinoma by regulating multi-targets.","authors":"Fei Wang, Chong Yuan, Yi Lu, Mojiao Wu, Hezhen Wu, Yifei Liu, Yanfang Yang","doi":"10.1016/j.jep.2024.119022","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Glycyrrhiza uralensis Fisch. (GC) is widely utilized in traditional Chinese medicine (TCM) for its properties in Qi tonification, heat clearing, and detoxification. Within TCM theory, Qi is also implicated in tumor development. Numerous TCM formulas containing GC are used for their anti-tumor effects, and contemporary pharmacological research has demonstrated that ethyl acetate extracts (EAe) of GC, along with potential bioactive compounds like glabridin (Gla), possess anti-tumor properties. Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and a major challenge to global healthcare, with high incidence and poor prognosis. Nevertheless, the effects and mechanisms of action of Gla in inhibiting HCC have not been extensively studied.</p><p><strong>Aim of study: </strong>This study aims to elucidate the effects and mechanisms of action of Gla against HCC by in vitro and in vivo experiments.</p><p><strong>Methods: </strong>The inhibitory effects of ethyl acetate extract (EAe) of GC and its bioactive compounds on HCC were studied using a drug-cell interaction system equipped with UPLC-MS/MS and high-throughput screening methods in vitro. RNA sequencing (RNA-seq) and bioinformatics technologies were employed to detect the differentially expressed genes (DEGs) and pathways in HepG2 cells. The findings were further validated using quantitative real-time PCR (qPCR) and Western blot (WB) assays. Additionally, an in vivo tumor-bearing mouse model established with H22 cells was utilized to examine alterations in tumor tissues via hematoxylin-eosin (HE) staining. Immunohistochemistry was used to assess the protein expression levels of hub targets within each group.</p><p><strong>Results: </strong>Both in vitro and in vivo experiments demonstrated the effects of EAe against HCC, identifying Gla was one of its main bioactive compounds. Integration of RNA-seq data with clinical databases revealed that Gla inhibited HCC by up-regulating the expression levels of DUSP5, ZFP36, KLF10, and NR4A1, while down-regulating RMI2 expression. These findings were further validated by Gene Expression Omnibus (GEO), qPCR, WB and immunohistochemistry assays.</p><p><strong>Conclusions: </strong>Gla regulates the expression levels of DUSP5, ZFP36, KLF10, NR4A1, and RMI2 to against HCC, providing valuable insights for the application of Gla in HCC treatment.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2024.119022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance: Glycyrrhiza uralensis Fisch. (GC) is widely utilized in traditional Chinese medicine (TCM) for its properties in Qi tonification, heat clearing, and detoxification. Within TCM theory, Qi is also implicated in tumor development. Numerous TCM formulas containing GC are used for their anti-tumor effects, and contemporary pharmacological research has demonstrated that ethyl acetate extracts (EAe) of GC, along with potential bioactive compounds like glabridin (Gla), possess anti-tumor properties. Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and a major challenge to global healthcare, with high incidence and poor prognosis. Nevertheless, the effects and mechanisms of action of Gla in inhibiting HCC have not been extensively studied.
Aim of study: This study aims to elucidate the effects and mechanisms of action of Gla against HCC by in vitro and in vivo experiments.
Methods: The inhibitory effects of ethyl acetate extract (EAe) of GC and its bioactive compounds on HCC were studied using a drug-cell interaction system equipped with UPLC-MS/MS and high-throughput screening methods in vitro. RNA sequencing (RNA-seq) and bioinformatics technologies were employed to detect the differentially expressed genes (DEGs) and pathways in HepG2 cells. The findings were further validated using quantitative real-time PCR (qPCR) and Western blot (WB) assays. Additionally, an in vivo tumor-bearing mouse model established with H22 cells was utilized to examine alterations in tumor tissues via hematoxylin-eosin (HE) staining. Immunohistochemistry was used to assess the protein expression levels of hub targets within each group.
Results: Both in vitro and in vivo experiments demonstrated the effects of EAe against HCC, identifying Gla was one of its main bioactive compounds. Integration of RNA-seq data with clinical databases revealed that Gla inhibited HCC by up-regulating the expression levels of DUSP5, ZFP36, KLF10, and NR4A1, while down-regulating RMI2 expression. These findings were further validated by Gene Expression Omnibus (GEO), qPCR, WB and immunohistochemistry assays.
Conclusions: Gla regulates the expression levels of DUSP5, ZFP36, KLF10, NR4A1, and RMI2 to against HCC, providing valuable insights for the application of Gla in HCC treatment.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.