{"title":"DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model.","authors":"Vural Orhun, Jololian Leon, Pan Lurong","doi":"10.1109/TCBB.2024.3493820","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of protein-ligand binding sites plays a crucial role in the initial stages of drug discovery. Accurately predicting the ligand types that are likely to bind to protein-ligand binding sites enables more informed decision making in drug design. Our study, DeepLigType, determines protein-ligand binding sites using Fpocket and then predicts the ligand type of these pockets with the deep learning model, Convolutional Block Attention Module (CBAM) with ResNet. CBAM-ResNet has been trained to accurately predict five distinct ligand types. We classified protein-ligand binding sites into five different categories according to the type of response ligands cause when they bind to their target proteins, which are antagonist, agonist, activator, inhibitor, and others. We created a novel dataset, referred to as LigType5, from the widely recognized PDBbind and scPDB dataset for training and testing our model. While the literature mostly focuses on the specificity and characteristic analysis of protein binding sites by experimental (laboratory-based) methods, we propose a computational method with the DeepLigType architecture. DeepLigType demonstrated an accuracy of 74.30% and an AUC of 0.83 in ligand type prediction on a novel test dataset using the CBAM-ResNet deep learning model. For access to the code implementation of this research, please visit our GitHub repository at https://github.com/drorhunvural/DeepLigType.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3493820","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of protein-ligand binding sites plays a crucial role in the initial stages of drug discovery. Accurately predicting the ligand types that are likely to bind to protein-ligand binding sites enables more informed decision making in drug design. Our study, DeepLigType, determines protein-ligand binding sites using Fpocket and then predicts the ligand type of these pockets with the deep learning model, Convolutional Block Attention Module (CBAM) with ResNet. CBAM-ResNet has been trained to accurately predict five distinct ligand types. We classified protein-ligand binding sites into five different categories according to the type of response ligands cause when they bind to their target proteins, which are antagonist, agonist, activator, inhibitor, and others. We created a novel dataset, referred to as LigType5, from the widely recognized PDBbind and scPDB dataset for training and testing our model. While the literature mostly focuses on the specificity and characteristic analysis of protein binding sites by experimental (laboratory-based) methods, we propose a computational method with the DeepLigType architecture. DeepLigType demonstrated an accuracy of 74.30% and an AUC of 0.83 in ligand type prediction on a novel test dataset using the CBAM-ResNet deep learning model. For access to the code implementation of this research, please visit our GitHub repository at https://github.com/drorhunvural/DeepLigType.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system