Distribution and sources of polycyclic aromatic hydrocarbons in cascade reservoir sediments: influence of anthropogenic activities and reservoir hydrology.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Xiaoying Li, Tong Li, Fushun Wang, Xueping Chen, Yong Qin, Yongsheng Chu, Ming Yang, Zi-Feng Zhang, Jing Ma
{"title":"Distribution and sources of polycyclic aromatic hydrocarbons in cascade reservoir sediments: influence of anthropogenic activities and reservoir hydrology.","authors":"Xiaoying Li, Tong Li, Fushun Wang, Xueping Chen, Yong Qin, Yongsheng Chu, Ming Yang, Zi-Feng Zhang, Jing Ma","doi":"10.1007/s10653-024-02256-0","DOIUrl":null,"url":null,"abstract":"<p><p>The construction of dams has caused disruptions to river connectivity, leading to alterations in the deposition of hydrophobic organic contaminants in reservoir sediments. Further investigation is warranted to explore the impact of cascade reservoirs with differing hydrological characteristics on polycyclic aromatic hydrocarbons (PAHs) distribution in sediment. This study examines the presence of 30 PAHs in the sediments collected from six cascade reservoirs situated in the Wujiang River basin during January and July 2017. The results showed that Σ30 PAHs ranged from 455-3000 ng/g dw (mean 1030 ng/g dw). Anthropogenic activities and reservoir hydrology determined the distribution trend of PAHs in sediments, with an overall increase from upstream to midstream and then a decrease downstream. The PAH levels were highly linked to the secondary industry (P < 0.05). This was further supported by the relationship between the PAH emissions from coal combustion and traffic sources analyzed by the positive matrix factorization model and economic parameters in the wet season (P < 0.01). At the same time, reservoir age (RA) showed a positive correlation with PAH concentrations (P < 0.05), while hydraulic retention time (HRT) exhibited a negative correlation with PAH levels (P = 0.03). The relationship between total organic carbon (TOC) and PAHs in stream sediments worldwide was nonlinear (P < 0.01), with PAH concentrations initially rising and then falling as TOC levels increased. Concerns regarding carcinogenic risk were raised due to contributions from coal and vehicular sources, with the risk increasing with RA.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"487"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02256-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The construction of dams has caused disruptions to river connectivity, leading to alterations in the deposition of hydrophobic organic contaminants in reservoir sediments. Further investigation is warranted to explore the impact of cascade reservoirs with differing hydrological characteristics on polycyclic aromatic hydrocarbons (PAHs) distribution in sediment. This study examines the presence of 30 PAHs in the sediments collected from six cascade reservoirs situated in the Wujiang River basin during January and July 2017. The results showed that Σ30 PAHs ranged from 455-3000 ng/g dw (mean 1030 ng/g dw). Anthropogenic activities and reservoir hydrology determined the distribution trend of PAHs in sediments, with an overall increase from upstream to midstream and then a decrease downstream. The PAH levels were highly linked to the secondary industry (P < 0.05). This was further supported by the relationship between the PAH emissions from coal combustion and traffic sources analyzed by the positive matrix factorization model and economic parameters in the wet season (P < 0.01). At the same time, reservoir age (RA) showed a positive correlation with PAH concentrations (P < 0.05), while hydraulic retention time (HRT) exhibited a negative correlation with PAH levels (P = 0.03). The relationship between total organic carbon (TOC) and PAHs in stream sediments worldwide was nonlinear (P < 0.01), with PAH concentrations initially rising and then falling as TOC levels increased. Concerns regarding carcinogenic risk were raised due to contributions from coal and vehicular sources, with the risk increasing with RA.

梯级水库沉积物中多环芳烃的分布和来源:人为活动和水库水文的影响。
大坝的建造破坏了河流的连通性,导致水库沉积物中疏水性有机污染物的沉积发生变化。有必要进行进一步调查,以探索具有不同水文特征的梯级水库对沉积物中多环芳烃(PAHs)分布的影响。本研究考察了 2017 年 1 月至 7 月期间从乌江流域 6 座梯级水库采集的沉积物中存在的 30 种 PAHs。结果表明,Σ30 PAHs的含量范围为455-3000 ng/g dw(平均值为1030 ng/g dw)。人类活动和水库水文决定了多环芳烃在沉积物中的分布趋势,从上游到中游总体呈上升趋势,然后向下游下降。多环芳烃含量与第二产业(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信