Connecting the dots in neuroscience research: The future of evidence synthesis

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Kaitlyn Hair , María Arroyo-Araujo , Sofija Vojvodic , Maria Economou , Charis Wong , Francesca Tinsdeall , Sean Smith , Torsten Rackoll , Emily S. Sena , Sarah K. McCann
{"title":"Connecting the dots in neuroscience research: The future of evidence synthesis","authors":"Kaitlyn Hair ,&nbsp;María Arroyo-Araujo ,&nbsp;Sofija Vojvodic ,&nbsp;Maria Economou ,&nbsp;Charis Wong ,&nbsp;Francesca Tinsdeall ,&nbsp;Sean Smith ,&nbsp;Torsten Rackoll ,&nbsp;Emily S. Sena ,&nbsp;Sarah K. McCann","doi":"10.1016/j.expneurol.2024.115047","DOIUrl":null,"url":null,"abstract":"<div><div>Making progress in neuroscience research involves learning from existing data. In this perspective piece, we explore the potential of a data-driven evidence ecosystem to connect all primary data streams, and synthesis efforts to inform evidence-based research and translational success from bench to bedside. To enable this transformation, we set out how we can produce evidence designed with evidence curation in mind. All data should be findable, understandable, and easily synthesisable, using a combination of human and machine effort. This will require shifts in research culture and tailored infrastructure to support rapid dissemination, data sharing, and transparency. We also discuss improvements in the way we can synthesise evidence to better inform primary research, including the potential of emerging technologies, big-data approaches, and breaking down research silos. Through a case study in stroke research, one of the most well-established areas for synthesis efforts, we demonstrate the progress in implementing elements of this ecosystem, with an emphasis on the need for coordinated efforts between laboratory researchers and synthesists.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"384 ","pages":"Article 115047"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001448862400373X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Making progress in neuroscience research involves learning from existing data. In this perspective piece, we explore the potential of a data-driven evidence ecosystem to connect all primary data streams, and synthesis efforts to inform evidence-based research and translational success from bench to bedside. To enable this transformation, we set out how we can produce evidence designed with evidence curation in mind. All data should be findable, understandable, and easily synthesisable, using a combination of human and machine effort. This will require shifts in research culture and tailored infrastructure to support rapid dissemination, data sharing, and transparency. We also discuss improvements in the way we can synthesise evidence to better inform primary research, including the potential of emerging technologies, big-data approaches, and breaking down research silos. Through a case study in stroke research, one of the most well-established areas for synthesis efforts, we demonstrate the progress in implementing elements of this ecosystem, with an emphasis on the need for coordinated efforts between laboratory researchers and synthesists.
连接神经科学研究中的点:证据综合的未来。
神经科学研究要取得进展,就必须从现有数据中学习。在这篇视角文章中,我们探讨了数据驱动的证据生态系统的潜力,以连接所有原始数据流和综合工作,为循证研究和从工作台到床边的成功转化提供信息。为了实现这一转变,我们阐述了如何在设计证据时考虑到证据整理。所有数据都应该是可查找、可理解、易综合的,并能通过人力和机器的共同努力来实现。这将需要研究文化的转变和量身定制的基础设施,以支持快速传播、数据共享和透明度。我们还讨论了如何改进综合证据的方法,以便更好地为基础研究提供信息,包括新兴技术的潜力、大数据方法以及打破研究孤岛。中风研究是综合工作最成熟的领域之一,我们通过中风研究的案例研究,展示了在实施该生态系统要素方面取得的进展,并强调了实验室研究人员和综合人员之间协调努力的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信