Artificial intelligence machine learning based evaluation of elevated left ventricular end-diastolic pressure: a Cleveland Clinic cohort study.

IF 2.1 3区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Cardiovascular diagnosis and therapy Pub Date : 2024-10-31 Epub Date: 2024-10-22 DOI:10.21037/cdt-24-128
Bo Xu, Michelle Z Fang, Yadi Zhou, Krishna Sanaka, Lars G Svensson, Richard A Grimm, Brian P Griffin, Zoran B Popovic, Feixiong Cheng
{"title":"Artificial intelligence machine learning based evaluation of elevated left ventricular end-diastolic pressure: a Cleveland Clinic cohort study.","authors":"Bo Xu, Michelle Z Fang, Yadi Zhou, Krishna Sanaka, Lars G Svensson, Richard A Grimm, Brian P Griffin, Zoran B Popovic, Feixiong Cheng","doi":"10.21037/cdt-24-128","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Left ventricular end-diastolic pressure (LVEDP) is a key indicator of cardiac health. The gold-standard method of measuring LVEDP is invasive intra-cardiac catheterization. Echocardiography is used for non-invasive estimation of left ventricular (LV) filling pressures; however, correlation with invasive LVEDP is variable. We sought to use machine learning (ML) algorithms to predict elevated LVEDP (>20 mmHg) using clinical, echocardiographic, and biomarker parameters.</p><p><strong>Methods: </strong>We identified a cohort of 460 consecutive patients from the Cleveland Clinic, without atrial fibrillation or significant mitral valve disease who underwent transthoracic echocardiography within 24 hours of elective heart catheterization between January 2008 and October 2010. We included patients' clinical (e.g., heart rate), echocardiographic (e.g., E/e'), and biomarker [e.g., N-terminal brain natriuretic peptide (NT-proBNP)] profiles. We fit logistic regression (LR), random forest (RF), gradient boosting (GB), support vector machine (SVM), and K-nearest neighbors (KNN) algorithms in a 20-iteration train-validate-test workflow and measured performance using average area under the receiver operating characteristic curve (AUROC). We also predicted elevated tau (>45 ms), the gold-standard parameter for LV diastolic dysfunction, and performed multi-class classification of the patients' cardiac conditions. For each outcome, LR weights were used to identify clinically relevant variables.</p><p><strong>Results: </strong>ML algorithms predicted elevated LVEDP (>20 mmHg) with good performance [AUROC =0.761, 95% confidence interval (CI): 0.725-0.796]. ML models showed excellent performance predicting elevated tau (>45 ms) (AUROC =0.832, 95% CI: 0.700-0.964) and classifying cardiac conditions (AUROC =0.757-0.975). We identified several clinical variables [e.g., diastolic blood pressure, body mass index (BMI), heart rate, left atrial volume, mitral valve deceleration time, and NT-proBNP] relevant for LVEDP prediction.</p><p><strong>Conclusions: </strong>Our study shows ML approaches can robustly predict elevated LVEDP and tau. ML may assist in the clinical interpretation of echocardiographic data.</p>","PeriodicalId":9592,"journal":{"name":"Cardiovascular diagnosis and therapy","volume":"14 5","pages":"788-797"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular diagnosis and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/cdt-24-128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Left ventricular end-diastolic pressure (LVEDP) is a key indicator of cardiac health. The gold-standard method of measuring LVEDP is invasive intra-cardiac catheterization. Echocardiography is used for non-invasive estimation of left ventricular (LV) filling pressures; however, correlation with invasive LVEDP is variable. We sought to use machine learning (ML) algorithms to predict elevated LVEDP (>20 mmHg) using clinical, echocardiographic, and biomarker parameters.

Methods: We identified a cohort of 460 consecutive patients from the Cleveland Clinic, without atrial fibrillation or significant mitral valve disease who underwent transthoracic echocardiography within 24 hours of elective heart catheterization between January 2008 and October 2010. We included patients' clinical (e.g., heart rate), echocardiographic (e.g., E/e'), and biomarker [e.g., N-terminal brain natriuretic peptide (NT-proBNP)] profiles. We fit logistic regression (LR), random forest (RF), gradient boosting (GB), support vector machine (SVM), and K-nearest neighbors (KNN) algorithms in a 20-iteration train-validate-test workflow and measured performance using average area under the receiver operating characteristic curve (AUROC). We also predicted elevated tau (>45 ms), the gold-standard parameter for LV diastolic dysfunction, and performed multi-class classification of the patients' cardiac conditions. For each outcome, LR weights were used to identify clinically relevant variables.

Results: ML algorithms predicted elevated LVEDP (>20 mmHg) with good performance [AUROC =0.761, 95% confidence interval (CI): 0.725-0.796]. ML models showed excellent performance predicting elevated tau (>45 ms) (AUROC =0.832, 95% CI: 0.700-0.964) and classifying cardiac conditions (AUROC =0.757-0.975). We identified several clinical variables [e.g., diastolic blood pressure, body mass index (BMI), heart rate, left atrial volume, mitral valve deceleration time, and NT-proBNP] relevant for LVEDP prediction.

Conclusions: Our study shows ML approaches can robustly predict elevated LVEDP and tau. ML may assist in the clinical interpretation of echocardiographic data.

基于人工智能机器学习的左心室舒张末压升高评估:克利夫兰诊所队列研究。
背景:左心室舒张末压(LVEDP)是心脏健康的一个关键指标。测量 LVEDP 的金标准方法是有创心导管检查。超声心动图可用于无创估测左心室充盈压,但与有创 LVEDP 的相关性不尽相同。我们试图利用机器学习(ML)算法,通过临床、超声心动图和生物标记物参数来预测升高的 LVEDP(>20 mmHg):2008年1月至2010年10月期间,克利夫兰诊所连续收治了460名无心房颤动或严重二尖瓣疾病的患者,他们在择期心脏导管术后24小时内接受了经胸超声心动图检查。我们纳入了患者的临床(如心率)、超声心动图(如 E/e')和生物标志物(如 N 端脑钠肽(NT-proBNP))资料。我们在 20 次迭代训练-验证-测试的工作流程中采用了逻辑回归 (LR)、随机森林 (RF)、梯度提升 (GB)、支持向量机 (SVM) 和 K 近邻 (KNN) 算法,并使用接收者工作特征曲线下的平均面积 (AUROC) 来衡量性能。我们还预测了左心室舒张功能障碍的黄金标准参数 tau(>45 ms)的升高,并对患者的心脏状况进行了多类分类。对于每种结果,均使用 LR 权重来确定临床相关变量:ML算法预测LVEDP升高(>20 mmHg)的性能良好[AUROC =0.761,95%置信区间(CI):0.725-0.796]。ML 模型在预测 tau 升高(>45 毫秒)(AUROC =0.832,95% CI:0.700-0.964)和心脏状况分类(AUROC =0.757-0.975)方面表现出色。我们确定了几个与 LVEDP 预测相关的临床变量(如舒张压、体重指数 (BMI)、心率、左心房容积、二尖瓣减速时间和 NT-proBNP):我们的研究表明,ML 方法能有效预测升高的 LVEDP 和 tau。结论:我们的研究表明,ML 方法可以稳健地预测升高的 LVEDP 和 tau,有助于超声心动图数据的临床解读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular diagnosis and therapy
Cardiovascular diagnosis and therapy Medicine-Cardiology and Cardiovascular Medicine
CiteScore
4.90
自引率
4.20%
发文量
45
期刊介绍: The journal ''Cardiovascular Diagnosis and Therapy'' (Print ISSN: 2223-3652; Online ISSN: 2223-3660) accepts basic and clinical science submissions related to Cardiovascular Medicine and Surgery. The mission of the journal is the rapid exchange of scientific information between clinicians and scientists worldwide. To reach this goal, the journal will focus on novel media, using a web-based, digital format in addition to traditional print-version. This includes on-line submission, review, publication, and distribution. The digital format will also allow submission of extensive supporting visual material, both images and video. The website www.thecdt.org will serve as the central hub and also allow posting of comments and on-line discussion. The web-site of the journal will be linked to a number of international web-sites (e.g. www.dxy.cn), which will significantly expand the distribution of its contents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信