Jin Gyeong Son, Hyun Kyong Shon, Ji-Eun Kim, In Ho Lee, Tae Geol Lee
{"title":"Peak-Based Machine Learning for Plastic Type Classification in Time-of-Flight Secondary Ion Mass Spectrometry.","authors":"Jin Gyeong Son, Hyun Kyong Shon, Ji-Eun Kim, In Ho Lee, Tae Geol Lee","doi":"10.1021/jasms.4c00325","DOIUrl":null,"url":null,"abstract":"<p><p>Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement data and machine learning were used in this work to classify six different types of plastics. In order to take into account the characteristics of the measurement data, the local maxima of the measurement data were first examined in a preprocessing step. Several machine learning methods were then implemented to create a model that could successfully classify the plastics. To visualize the data distribution, we applied a dimensionality reduction method, namely, principal component analysis. Finally, to distinguish between the six types of plastics, we conducted an ensemble analysis using four tree-based algorithms: decision tree, random forest, gradient boosting, and LIGHTGBM. This approach can identify the feature importance of plastic samples and allow the inference of the chemical properties of each plastic type. In this way, ToF-SIMS data could be utilized to successfully classify plastics and enhance explainability.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"3107-3115"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00325","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurement data and machine learning were used in this work to classify six different types of plastics. In order to take into account the characteristics of the measurement data, the local maxima of the measurement data were first examined in a preprocessing step. Several machine learning methods were then implemented to create a model that could successfully classify the plastics. To visualize the data distribution, we applied a dimensionality reduction method, namely, principal component analysis. Finally, to distinguish between the six types of plastics, we conducted an ensemble analysis using four tree-based algorithms: decision tree, random forest, gradient boosting, and LIGHTGBM. This approach can identify the feature importance of plastic samples and allow the inference of the chemical properties of each plastic type. In this way, ToF-SIMS data could be utilized to successfully classify plastics and enhance explainability.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives