Allison B Esselman, Megan S Ward, Cody R Marshall, Ellie L Pingry, Martin Dufresne, Melissa A Farrow, Matthew Schrag, Jeffrey M Spraggins
{"title":"A Streamlined Workflow for Microscopy-Driven MALDI Imaging Mass Spectrometry Data Collection.","authors":"Allison B Esselman, Megan S Ward, Cody R Marshall, Ellie L Pingry, Martin Dufresne, Melissa A Farrow, Matthew Schrag, Jeffrey M Spraggins","doi":"10.1021/jasms.4c00365","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a rapidly advancing technology for biomedical research. As spatial resolution increases, however, so do acquisition time, file size, and experimental cost, which increases the need to perform precise sampling of targeted tissue regions to optimize the biological information gleaned from an experiment and minimize wasted resources. The ability to define instrument measurement regions based on key tissue features and automatically sample these specific regions of interest (ROIs) addresses this challenge. Herein, we demonstrate a workflow using standard software that allows for direct sampling of microscopy-defined regions by MALDI IMS. Three case studies are included, highlighting different methods for defining features from common sample types─manual annotation of vasculature in human brain tissue, automated segmentation of renal functional tissue units across whole slide images using custom segmentation algorithms, and automated segmentation of dispersed HeLa cells using open-source software. Each case minimizes data acquisition from unnecessary sample regions and dramatically increases throughput while uncovering molecular heterogeneity within targeted ROIs. This workflow provides an approachable method for spatially targeted MALDI IMS driven by microscopy as part of multimodal molecular imaging studies.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"2795-2800"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00365","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a rapidly advancing technology for biomedical research. As spatial resolution increases, however, so do acquisition time, file size, and experimental cost, which increases the need to perform precise sampling of targeted tissue regions to optimize the biological information gleaned from an experiment and minimize wasted resources. The ability to define instrument measurement regions based on key tissue features and automatically sample these specific regions of interest (ROIs) addresses this challenge. Herein, we demonstrate a workflow using standard software that allows for direct sampling of microscopy-defined regions by MALDI IMS. Three case studies are included, highlighting different methods for defining features from common sample types─manual annotation of vasculature in human brain tissue, automated segmentation of renal functional tissue units across whole slide images using custom segmentation algorithms, and automated segmentation of dispersed HeLa cells using open-source software. Each case minimizes data acquisition from unnecessary sample regions and dramatically increases throughput while uncovering molecular heterogeneity within targeted ROIs. This workflow provides an approachable method for spatially targeted MALDI IMS driven by microscopy as part of multimodal molecular imaging studies.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives