Kai Ran, Yong Li, Yi-Mei Zhang, Dian-Yong Tang, Zhong-Zhu Chen, Zhi-Gang Xu, Li Zhang, Bo-Chu Wang, Jiu-Hong Huang
{"title":"Discovery and optimization of novel 4-morpholinothieno[3,2-d]pyrimidine derivatives as potent BET inhibitors for cancer therapy.","authors":"Kai Ran, Yong Li, Yi-Mei Zhang, Dian-Yong Tang, Zhong-Zhu Chen, Zhi-Gang Xu, Li Zhang, Bo-Chu Wang, Jiu-Hong Huang","doi":"10.1016/j.bioorg.2024.107929","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of structurally novel and potently active BET inhibitors represents a significant advancement in the field of anticancer therapeutics. In the present investigation, leveraging the outcomes of previous screening endeavors, we successfully optimized and synthesized a novel series of bromodomain and extra-terminal (BET) inhibitors with a 4-morpholinothieno[3,2-d]pyrimidine structure. Among the synthesized compounds, compound 6c emerged as a promising candidate, exhibiting exceptional inhibitory activities against various BET isoform proteins, with IC<sub>50</sub> values ranging from 3.3 to 42.0 nM. In cellular assays, compound 6c demonstrated robust antiproliferative effects in SU-DHL-4 cells, achieving an IC<sub>50</sub> value of 8.6 ± 3.3 nM. Further mechanistic studies revealed that compound 6c effectively decreased the expression of c-Myc, a critical oncogenic driver regulated by the BET protein, and induced cell cycle arrest at the G1 phase, as well as cell apoptosis, in a dose-dependent manner. Moreover, in-silico prediction of the physiochemical and pharmacokinetic properties clarified that compound 6c has acceptable drug-like profiles. Taken these findings together, compound 6c represents a novel and potent BET inhibitor, thus positioning it as a promising candidate for subsequent pre-clinical evaluations in the realm of cancer therapy.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107929"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107929","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of structurally novel and potently active BET inhibitors represents a significant advancement in the field of anticancer therapeutics. In the present investigation, leveraging the outcomes of previous screening endeavors, we successfully optimized and synthesized a novel series of bromodomain and extra-terminal (BET) inhibitors with a 4-morpholinothieno[3,2-d]pyrimidine structure. Among the synthesized compounds, compound 6c emerged as a promising candidate, exhibiting exceptional inhibitory activities against various BET isoform proteins, with IC50 values ranging from 3.3 to 42.0 nM. In cellular assays, compound 6c demonstrated robust antiproliferative effects in SU-DHL-4 cells, achieving an IC50 value of 8.6 ± 3.3 nM. Further mechanistic studies revealed that compound 6c effectively decreased the expression of c-Myc, a critical oncogenic driver regulated by the BET protein, and induced cell cycle arrest at the G1 phase, as well as cell apoptosis, in a dose-dependent manner. Moreover, in-silico prediction of the physiochemical and pharmacokinetic properties clarified that compound 6c has acceptable drug-like profiles. Taken these findings together, compound 6c represents a novel and potent BET inhibitor, thus positioning it as a promising candidate for subsequent pre-clinical evaluations in the realm of cancer therapy.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.