Wanda Christ, Sebastian Kapell, Michal J Sobkowiak, Georgios Mermelekas, Björn Evertsson, Helena Sork, Osama Saher, Safa Bazaz, Oskar Gustafsson, Eduardo I Cardenas, Viviana Villa, Roberta Ricciarelli, Johan K Sandberg, Jonas Bergquist, Andrea Sturchio, Per Svenningsson, Tarja Malm, Alberto J Espay, Maria Pernemalm, Anders Lindén, Jonas Klingström, Samir El Andaloussi, Kariem Ezzat
{"title":"SARS-CoV-2 and HSV-1 Induce Amyloid Aggregation in Human CSF Resulting in Drastic Soluble Protein Depletion.","authors":"Wanda Christ, Sebastian Kapell, Michal J Sobkowiak, Georgios Mermelekas, Björn Evertsson, Helena Sork, Osama Saher, Safa Bazaz, Oskar Gustafsson, Eduardo I Cardenas, Viviana Villa, Roberta Ricciarelli, Johan K Sandberg, Jonas Bergquist, Andrea Sturchio, Per Svenningsson, Tarja Malm, Alberto J Espay, Maria Pernemalm, Anders Lindén, Jonas Klingström, Samir El Andaloussi, Kariem Ezzat","doi":"10.1021/acschemneuro.4c00636","DOIUrl":null,"url":null,"abstract":"<p><p>The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogeneous nucleation (HEN). In the current study, we show that the incubation of HSV-1 and SARS-CoV-2 with human cerebrospinal fluid (CSF) leads to the amyloid aggregation of several proteins known to be involved in neurodegenerative diseases, such as APLP1 (amyloid β precursor like protein 1), ApoE, clusterin, α2-macroglobulin, PGK-1 (phosphoglycerate kinase 1), ceruloplasmin, nucleolin, 14-3-3, transthyretin, and vitronectin. Importantly, UV-inactivation of SARS-CoV-2 does not affect its ability to induce amyloid aggregation, as amyloid formation is dependent on viral surface catalysis via HEN and not its ability to replicate. Additionally, viral amyloid induction led to a dramatic drop in the soluble protein concentration in the CSF. Our results show that viruses can physically induce amyloid aggregation of proteins in human CSF and result in soluble protein depletion, thus providing a potential mechanism that may account for the association between persistent and latent/reactivating brain infections and neurodegenerative diseases.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00636","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The corona virus (SARS-CoV-2) pandemic and the resulting long-term neurological complications in patients, known as long COVID, have renewed interest in the correlation between viral infections and neurodegenerative brain disorders. While many viruses can reach the central nervous system (CNS) causing acute or chronic infections (such as herpes simplex virus 1, HSV-1), the lack of a clear mechanistic link between viruses and protein aggregation into amyloids, a characteristic of several neurodegenerative diseases, has rendered such a connection elusive. Recently, we showed that viruses can induce aggregation of purified amyloidogenic proteins via the direct physicochemical mechanism of heterogeneous nucleation (HEN). In the current study, we show that the incubation of HSV-1 and SARS-CoV-2 with human cerebrospinal fluid (CSF) leads to the amyloid aggregation of several proteins known to be involved in neurodegenerative diseases, such as APLP1 (amyloid β precursor like protein 1), ApoE, clusterin, α2-macroglobulin, PGK-1 (phosphoglycerate kinase 1), ceruloplasmin, nucleolin, 14-3-3, transthyretin, and vitronectin. Importantly, UV-inactivation of SARS-CoV-2 does not affect its ability to induce amyloid aggregation, as amyloid formation is dependent on viral surface catalysis via HEN and not its ability to replicate. Additionally, viral amyloid induction led to a dramatic drop in the soluble protein concentration in the CSF. Our results show that viruses can physically induce amyloid aggregation of proteins in human CSF and result in soluble protein depletion, thus providing a potential mechanism that may account for the association between persistent and latent/reactivating brain infections and neurodegenerative diseases.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research