Wenya Lu, He zhao, Razium Ali Soomro, Ning Sun, Bin Xu
{"title":"Lattice sulfuration enhanced sodium storage performance of Na0.9Li0.1Zn0.05Ni0.25Mn0.6O2 cathode","authors":"Wenya Lu, He zhao, Razium Ali Soomro, Ning Sun, Bin Xu","doi":"10.1016/j.cej.2024.157663","DOIUrl":null,"url":null,"abstract":"Introducing lattice oxygen redox for charge compensation in layered metal oxides is an effective way to develop advanced cathodes for high energy density sodium-ion batteries (SIBs). However, the asymmetry of lattice oxygen oxidation and reduction incurs oxygen release and crystal structure rearrangement, leading to poor reversibility of the charge and discharge process. Herein, a Na<sub>2</sub>S-assisted sulfuration strategy is firstly proposed to incorporate active sulfur into the crystal lattice of Na<sub>0.9</sub>Li<sub>0.1</sub>Zn<sub>0.05</sub>Ni<sub>0.25</sub>Mn<sub>0.6</sub>O<sub>2</sub> cathode. The Sulfur anions within the interior lattice participate in the redox process and enhance the integral coordination stability by mitigating undesired excessive oxygen redox, while the exterior sulfur forms a polyanionic layer to protect the particle surface against electrolyte corrosion. The incorporation of an extra redox center efficiently facilitates the increase of the discharge capacity from 159.9 to 179.2 mAh g<sup>−1</sup> within the voltage range of 1.5–4.5 V. Moreover, the larger ionic radius of sulfur enlarges the interplanar spacing, thus facilitating Na<sup>+</sup> ions transfer, especially at high current density. As a result, the modified cathode exhibits significantly enhanced electrochemical performance, with a capacity retention of 87 % after 100 cycles at 0.2C and an excellent rate capability of 98.0 mAh g<sup>−1</sup> at 10 C. Moreover, the assembled Na ion full cell based on a commercial hard carbon anode achieves an impressive capacity of 160.4mAh g<sup>−1</sup> at 0.1 C and could cycled steadily for over 100 cycles. The modification of layer oxides via sulfuration strategy provides a promising pathway for the structural design of novel cathodes with superior cycle performance for high-energy-density SIBs applications.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"48 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157663","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introducing lattice oxygen redox for charge compensation in layered metal oxides is an effective way to develop advanced cathodes for high energy density sodium-ion batteries (SIBs). However, the asymmetry of lattice oxygen oxidation and reduction incurs oxygen release and crystal structure rearrangement, leading to poor reversibility of the charge and discharge process. Herein, a Na2S-assisted sulfuration strategy is firstly proposed to incorporate active sulfur into the crystal lattice of Na0.9Li0.1Zn0.05Ni0.25Mn0.6O2 cathode. The Sulfur anions within the interior lattice participate in the redox process and enhance the integral coordination stability by mitigating undesired excessive oxygen redox, while the exterior sulfur forms a polyanionic layer to protect the particle surface against electrolyte corrosion. The incorporation of an extra redox center efficiently facilitates the increase of the discharge capacity from 159.9 to 179.2 mAh g−1 within the voltage range of 1.5–4.5 V. Moreover, the larger ionic radius of sulfur enlarges the interplanar spacing, thus facilitating Na+ ions transfer, especially at high current density. As a result, the modified cathode exhibits significantly enhanced electrochemical performance, with a capacity retention of 87 % after 100 cycles at 0.2C and an excellent rate capability of 98.0 mAh g−1 at 10 C. Moreover, the assembled Na ion full cell based on a commercial hard carbon anode achieves an impressive capacity of 160.4mAh g−1 at 0.1 C and could cycled steadily for over 100 cycles. The modification of layer oxides via sulfuration strategy provides a promising pathway for the structural design of novel cathodes with superior cycle performance for high-energy-density SIBs applications.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research