SegHSI: Semantic Segmentation of Hyperspectral Images With Limited Labeled Pixels

Huan Liu;Wei Li;Xiang-Gen Xia;Mengmeng Zhang;Zhengqi Guo;Lujie Song
{"title":"SegHSI: Semantic Segmentation of Hyperspectral Images With Limited Labeled Pixels","authors":"Huan Liu;Wei Li;Xiang-Gen Xia;Mengmeng Zhang;Zhengqi Guo;Lujie Song","doi":"10.1109/TIP.2024.3492724","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at \n<uri>https://github.com/huanliu233/SegHSI</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6469-6482"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10751785/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at https://github.com/huanliu233/SegHSI .
SegHSI:利用有限的标记像素对高光谱图像进行语义分割
高光谱图像(HSI)具有数百个窄光谱带,越来越多地用于遥感中的地面物体分类。然而,许多 HSI 分类模型都是逐个像素进行操作,限制了空间信息的利用,导致整个图像的推理时间增加。本文提出了一种高效的端到端 HSI 分割模型 SegHSI 以及一种新颖的训练策略。SegHSI 采用无头结构,带有集群注意模块和空间感知前馈网络(SA-FFN),用于多尺度空间编码。集群注意通过在 HSI 中构建的集群对像素进行编码,而 SA-FFN 则整合了深度卷积以增强空间上下文。我们的训练策略采用学生-教师模型框架,将标记像素类别信息与未标记像素的一致性学习相结合。在三个公共 HSI 数据集上的实验表明,SegHSI 不仅在分割准确率上超越了其他最先进的模型,而且推理时间也达到了秒级,甚至在全图分类上达到了亚秒级的速度。代码见 https://github.com/huanliu233/SegHSI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信