Huan Liu;Wei Li;Xiang-Gen Xia;Mengmeng Zhang;Zhengqi Guo;Lujie Song
{"title":"SegHSI: Semantic Segmentation of Hyperspectral Images With Limited Labeled Pixels","authors":"Huan Liu;Wei Li;Xiang-Gen Xia;Mengmeng Zhang;Zhengqi Guo;Lujie Song","doi":"10.1109/TIP.2024.3492724","DOIUrl":null,"url":null,"abstract":"Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at \n<uri>https://github.com/huanliu233/SegHSI</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"6469-6482"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10751785/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at
https://github.com/huanliu233/SegHSI
.