Kang Li, Yi Hao, Nan Wang, Yingming Feng, Dehai Song, Yanyu Chen, Hao Zhang, Zhaopeng Ren, Xianwen Bao
{"title":"Hydrodynamic mechanisms of topographic evolution in straight sandy beach: a case study of Wanpingkou beach, China","authors":"Kang Li, Yi Hao, Nan Wang, Yingming Feng, Dehai Song, Yanyu Chen, Hao Zhang, Zhaopeng Ren, Xianwen Bao","doi":"10.3389/fmars.2024.1488610","DOIUrl":null,"url":null,"abstract":"Stricter controls on destructive human activities in recent years have improved the protection and management of sandy coasts in China. Marine-driven geomorphic changes have become the predominant process influencing future beach evolution. However, in the complex geomorphic conditions of mixed artificial and natural coastlines, the mechanisms and contributions of various marine-driven factors to beach changes remain unclear. Using methods of field observations and numerical simulations by FVCOM model, this study reveals the sedimentary dynamic mechanism of straight sandy beach in the southern Shandong Peninsula (Wanpingkou beach, WPK beach). From 2005 to 2016, the northern section of WPK Beach eroded at a rate of approximately 2-3 m/year, the middle section at about 0.5-1.5 m/year, and the southern section accrued at an average rate of about 1-2 m/year, demonstrating an overall pattern of “northern erosion and southern accretion.” During winter, the average grain size of beach sediments is about 0.5 mm with minimal variations, indicating an onshore transport trend; in summer, the average grain size is about 0.7 mm with larger variations, indicating an offshore transport trend. Offshore sediment transport correlates mainly with seasonal changes in wind direction, while alongshore sediment transport is influenced by tidal currents, wind-induced currents, and wave-induced currents. Wave-induced currents are the primary force in alongshore sediment transport with a velocity of 0.1-0.3 m/s toward southwest. Followed by tidal currents with a velocity of 0.05-0.1 m/s, and wind-induced currents with a velocity of 0-0.1 m/s, which have a relatively minor impact. Therefore, seasonal changes in beach morphology are primarily controlled by waves, while interannual variations is mainly influenced by a combination of wave-induced currents and tidal currents. With increasing efforts in beach maintenance and coastal ecological restoration in recent years, understanding the sedimentary dynamics of beaches remains of vital theoretical and practical value.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"19 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1488610","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stricter controls on destructive human activities in recent years have improved the protection and management of sandy coasts in China. Marine-driven geomorphic changes have become the predominant process influencing future beach evolution. However, in the complex geomorphic conditions of mixed artificial and natural coastlines, the mechanisms and contributions of various marine-driven factors to beach changes remain unclear. Using methods of field observations and numerical simulations by FVCOM model, this study reveals the sedimentary dynamic mechanism of straight sandy beach in the southern Shandong Peninsula (Wanpingkou beach, WPK beach). From 2005 to 2016, the northern section of WPK Beach eroded at a rate of approximately 2-3 m/year, the middle section at about 0.5-1.5 m/year, and the southern section accrued at an average rate of about 1-2 m/year, demonstrating an overall pattern of “northern erosion and southern accretion.” During winter, the average grain size of beach sediments is about 0.5 mm with minimal variations, indicating an onshore transport trend; in summer, the average grain size is about 0.7 mm with larger variations, indicating an offshore transport trend. Offshore sediment transport correlates mainly with seasonal changes in wind direction, while alongshore sediment transport is influenced by tidal currents, wind-induced currents, and wave-induced currents. Wave-induced currents are the primary force in alongshore sediment transport with a velocity of 0.1-0.3 m/s toward southwest. Followed by tidal currents with a velocity of 0.05-0.1 m/s, and wind-induced currents with a velocity of 0-0.1 m/s, which have a relatively minor impact. Therefore, seasonal changes in beach morphology are primarily controlled by waves, while interannual variations is mainly influenced by a combination of wave-induced currents and tidal currents. With increasing efforts in beach maintenance and coastal ecological restoration in recent years, understanding the sedimentary dynamics of beaches remains of vital theoretical and practical value.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.