Patrick Kiele;Gregor Laengle;Martin Schmoll;Cristian Pasluosta;Ronny Pfeifer;Martin Schuettler;Oskar Aszmann;Thomas Stieglitz
{"title":"Neural Implants Without Active Implanted Electronics: Possibilities and Limitations of Transcutaneous Coupling in Miniaturized Active Implants","authors":"Patrick Kiele;Gregor Laengle;Martin Schmoll;Cristian Pasluosta;Ronny Pfeifer;Martin Schuettler;Oskar Aszmann;Thomas Stieglitz","doi":"10.1109/OJEMB.2024.3477267","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n Transcutaneous coupling scheme for wireless powering and signal in active implants are known for more than a decade. This study aimed to investigate the in vivo behavior of this approach to drive multiple channels of an implanted peripheral nerve interfaces. \n<italic>Methods:</i>\n The stimulation signals were transmitted through the skin over two contacts to an intracorporeal counterpart which was connected to a cuff electrode with two channels. EMG after stimulation was measured to establish recruitment curves. \n<italic>Results:</i>\n Limitations of transcutaneous coupling were found in the feasible complexity of the system. High electrical crosstalk in a multi-channel system reduces this approach to low channel applications, such as pain treatment. No significant influence of the pulse width or extracorporeal stimulation amplitude on the electrical crosstalk was observed. \n<italic>Conclusions:</i>\n The study's findings provide insight into the behavior of the transcutaneous coupling scheme in vivo and highlight the limitations and areas of application. Our results indicate that transcutaneous coupling schemes are a promising alternative approach for wireless powering of implants, as it does not require complex implanted electronics, expensive sophisticated electronics, and hermetic enclosures. Physical constraints, however, limit the use in highly selective nerve stimulation scenarios.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10710177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10710177/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal:
Transcutaneous coupling scheme for wireless powering and signal in active implants are known for more than a decade. This study aimed to investigate the in vivo behavior of this approach to drive multiple channels of an implanted peripheral nerve interfaces.
Methods:
The stimulation signals were transmitted through the skin over two contacts to an intracorporeal counterpart which was connected to a cuff electrode with two channels. EMG after stimulation was measured to establish recruitment curves.
Results:
Limitations of transcutaneous coupling were found in the feasible complexity of the system. High electrical crosstalk in a multi-channel system reduces this approach to low channel applications, such as pain treatment. No significant influence of the pulse width or extracorporeal stimulation amplitude on the electrical crosstalk was observed.
Conclusions:
The study's findings provide insight into the behavior of the transcutaneous coupling scheme in vivo and highlight the limitations and areas of application. Our results indicate that transcutaneous coupling schemes are a promising alternative approach for wireless powering of implants, as it does not require complex implanted electronics, expensive sophisticated electronics, and hermetic enclosures. Physical constraints, however, limit the use in highly selective nerve stimulation scenarios.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.