{"title":"Identifying Winner-Takes-All Emergence in Random Nanowire Networks: an Inverse Problem","authors":"Fábio Rangel Duarte, shardul mukim, Mauro Ferreira, Claudia Gomes da Rocha","doi":"10.1039/d4cp03242j","DOIUrl":null,"url":null,"abstract":"Random nanowire networks (NWNs) are interconnects that enable the integration of nanoscopic building blocks (the nanowires) in a disorganized fashion, enabling the study of complex emergent phenomena in nanomaterials and built-in fault-tolerant processing functionalities; the latter can lead to advances in large-scale electronic devices that can be fabricated with no particular array/grid high-precision pattern. However, when various nanowires are assembled to form an intricate network, their individual features are somehow lost in the complex NWN frame, in line with the complexity hallmark “the whole differs from the sum of the parts”. Individual nanowire materials and geometrical features can only be inferred indirectly by attempting to extract information about their initial conditions from a response function measurement. In this work, we present a mathematical framework that enables inference of the intrinsic properties of highly complex/intricate systems such as random NWNs in which information about their individual parts cannot be easily accessed due to their network formation and dynamical conductance behaviour falling in the category of memristive systems. Our method, named misfit minimization, is rooted in nonlinear regression supervised learning approaches in which we find the optimum parameters that minimize a cost function defined as the square least error between conductance evolution curves taken for a target NWN system and multiple configurational NWN samples composing the training set. The optimized parameters are features referent to the target NWN system’s initial conditions obtained in an inverse fashion: from the response output function, we extract information about the target system’s initial conditions. Accessing the nanowire individual features in a NWN frame, as our methodology allows, enables us to predict the conduction mechanisms of the NWN subjected to a current input source; these can be via a “winner takes all” energy-efficient scheme using a single conduction pathway composed of multiple nanowires connected in series or via multiple parallel conduction pathways. Predicting the conduction mechanism of complex and dynamical systems such as memristive NWNs is critical for their use in next-generation memory and brain-inspired technologies since their memory capability relies on the creation of such pathways activated and consolidated by the input current signal.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"159 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03242j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Random nanowire networks (NWNs) are interconnects that enable the integration of nanoscopic building blocks (the nanowires) in a disorganized fashion, enabling the study of complex emergent phenomena in nanomaterials and built-in fault-tolerant processing functionalities; the latter can lead to advances in large-scale electronic devices that can be fabricated with no particular array/grid high-precision pattern. However, when various nanowires are assembled to form an intricate network, their individual features are somehow lost in the complex NWN frame, in line with the complexity hallmark “the whole differs from the sum of the parts”. Individual nanowire materials and geometrical features can only be inferred indirectly by attempting to extract information about their initial conditions from a response function measurement. In this work, we present a mathematical framework that enables inference of the intrinsic properties of highly complex/intricate systems such as random NWNs in which information about their individual parts cannot be easily accessed due to their network formation and dynamical conductance behaviour falling in the category of memristive systems. Our method, named misfit minimization, is rooted in nonlinear regression supervised learning approaches in which we find the optimum parameters that minimize a cost function defined as the square least error between conductance evolution curves taken for a target NWN system and multiple configurational NWN samples composing the training set. The optimized parameters are features referent to the target NWN system’s initial conditions obtained in an inverse fashion: from the response output function, we extract information about the target system’s initial conditions. Accessing the nanowire individual features in a NWN frame, as our methodology allows, enables us to predict the conduction mechanisms of the NWN subjected to a current input source; these can be via a “winner takes all” energy-efficient scheme using a single conduction pathway composed of multiple nanowires connected in series or via multiple parallel conduction pathways. Predicting the conduction mechanism of complex and dynamical systems such as memristive NWNs is critical for their use in next-generation memory and brain-inspired technologies since their memory capability relies on the creation of such pathways activated and consolidated by the input current signal.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.