Bowen Lu, Wei Wang, Jian Huang, Haohao Gao, Suhui Chen, Haiwei Xu, Zile Hua, Jianlin Shi
{"title":"Self-Reconstructed Amorphous CoOx/NiCoB Heterostructure Catalysts for Enhanced HER Performance","authors":"Bowen Lu, Wei Wang, Jian Huang, Haohao Gao, Suhui Chen, Haiwei Xu, Zile Hua, Jianlin Shi","doi":"10.1002/smll.202408571","DOIUrl":null,"url":null,"abstract":"Amorphous electrocatalysts exhibit potentials as precursors for triggering the in situ reconstruction to generate the real catalytic active species toward electrochemical processes. In this work, a new kind of amorphous Ni-Co-B alloy pre-catalysts for hydrogen evolution reaction (HER) is reported, which is obtained via a facile electroless plating strategy on the nickel foam (NF). Interestingly, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and morphological characterizations identify the in situ reconstruction process during HER accompanied by the preferential leaching of surface B species and the formation of amorphous CoO<sub>x</sub> nanosheet arrays as the real active sites. Benefiting from the synergistic effect between the surface CoO<sub>x</sub> layer and the inner unaltered NiCoB phase, the resultant CoO<sub>x</sub>/NiCoB heterostructure catalyst achieves a low overpotential of 209 mV at the elevated current density of 500 mA cm<sup>−2</sup> and maintains stability for 300 h without significant attenuation. Theoretical calculation reveals the electron reconfiguration at the interfaces between the newly formed CoO<sub>x</sub> and inner NiCoB phases, which is favorable for the stabilization of reconstructed active oxide layers at the reductive potentials for catalyzing HER. Moreover, the CoO<sub>x</sub>/NiCoB heterostructure optimizes hydrogen adsorption free energies, thereby enhancing HER catalytic activity.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"25 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408571","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amorphous electrocatalysts exhibit potentials as precursors for triggering the in situ reconstruction to generate the real catalytic active species toward electrochemical processes. In this work, a new kind of amorphous Ni-Co-B alloy pre-catalysts for hydrogen evolution reaction (HER) is reported, which is obtained via a facile electroless plating strategy on the nickel foam (NF). Interestingly, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and morphological characterizations identify the in situ reconstruction process during HER accompanied by the preferential leaching of surface B species and the formation of amorphous CoOx nanosheet arrays as the real active sites. Benefiting from the synergistic effect between the surface CoOx layer and the inner unaltered NiCoB phase, the resultant CoOx/NiCoB heterostructure catalyst achieves a low overpotential of 209 mV at the elevated current density of 500 mA cm−2 and maintains stability for 300 h without significant attenuation. Theoretical calculation reveals the electron reconfiguration at the interfaces between the newly formed CoOx and inner NiCoB phases, which is favorable for the stabilization of reconstructed active oxide layers at the reductive potentials for catalyzing HER. Moreover, the CoOx/NiCoB heterostructure optimizes hydrogen adsorption free energies, thereby enhancing HER catalytic activity.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research