{"title":"Computing the Noncommutative Inner Rank by Means of Operator-Valued Free Probability Theory","authors":"Johannes Hoffmann, Tobias Mai, Roland Speicher","doi":"10.1007/s10208-024-09684-5","DOIUrl":null,"url":null,"abstract":"<p>We address the noncommutative version of the Edmonds’ problem, which asks to determine the inner rank of a matrix in noncommuting variables. We provide an algorithm for the calculation of this inner rank by relating the problem with the distribution of a basic object in free probability theory, namely operator-valued semicircular elements. We have to solve a matrix-valued quadratic equation, for which we provide precise analytical and numerical control on the fixed point algorithm for solving the equation. Numerical examples show the efficiency of the algorithm.\n</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"34 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09684-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We address the noncommutative version of the Edmonds’ problem, which asks to determine the inner rank of a matrix in noncommuting variables. We provide an algorithm for the calculation of this inner rank by relating the problem with the distribution of a basic object in free probability theory, namely operator-valued semicircular elements. We have to solve a matrix-valued quadratic equation, for which we provide precise analytical and numerical control on the fixed point algorithm for solving the equation. Numerical examples show the efficiency of the algorithm.
期刊介绍:
Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer.
With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles.
The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.