Ammonia Iron: An Epistemic Challenge with Practical Consequences

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Robert Schlögl
{"title":"Ammonia Iron: An Epistemic Challenge with Practical Consequences","authors":"Robert Schlögl","doi":"10.1021/acs.jpcc.4c05161","DOIUrl":null,"url":null,"abstract":"Ammonia synthesis from elements using the Haber–Bosch (HB) process will grow in demand above the present world-scale application through the need to transport renewable energy. The actual broad academic research effort concentrates on novel solutions, as the existing technology is considered to be mature. The paper investigates this statement by analyzing the relevance of the foundational model for optimizing the iron HB catalyst. The epistemic analysis dwells upon reductionistic assumptions, opening science gaps between model catalysts and performance operation. The mechanistic understanding of the HB process limits expectations for future development but opens up aspects of the optimization potential. It lies in the material chemistry of how the structure of the active sites, which is fixed in space and time in the model concept, is realized in performance catalysts. Significant chances are seen to further improve the existing reliable technology through optimization of the iron-based material. Its intricate property profile precludes success by further empirical searches but requires the full power of a knowledge-based approach guided by a suggested development of the functional model.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"6 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c05161","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia synthesis from elements using the Haber–Bosch (HB) process will grow in demand above the present world-scale application through the need to transport renewable energy. The actual broad academic research effort concentrates on novel solutions, as the existing technology is considered to be mature. The paper investigates this statement by analyzing the relevance of the foundational model for optimizing the iron HB catalyst. The epistemic analysis dwells upon reductionistic assumptions, opening science gaps between model catalysts and performance operation. The mechanistic understanding of the HB process limits expectations for future development but opens up aspects of the optimization potential. It lies in the material chemistry of how the structure of the active sites, which is fixed in space and time in the model concept, is realized in performance catalysts. Significant chances are seen to further improve the existing reliable technology through optimization of the iron-based material. Its intricate property profile precludes success by further empirical searches but requires the full power of a knowledge-based approach guided by a suggested development of the functional model.

Abstract Image

氨铁:具有实际后果的认识论挑战
利用哈伯-博施(HB)工艺从元素中合成氨的需求将因运输可再生能源的需要而增长,超过目前的世界应用规模。由于现有技术被认为已经成熟,实际的广泛学术研究工作集中在新型解决方案上。本文通过分析优化 HB 铁催化剂的基础模型的相关性来研究这一说法。认识论分析以还原论假设为基础,揭示了模型催化剂与性能操作之间的科学差距。对碳氢化合物工艺的机械理解限制了对未来发展的期望,但也开启了优化潜力的各个方面。在模型概念中,活性位点的结构在空间和时间上都是固定的,而在高性能催化剂中,活性位点的结构是如何实现的,这取决于材料化学。通过优化铁基材料,进一步改进现有可靠技术的机会很大。铁基材料的特性错综复杂,无法通过进一步的经验搜索获得成功,而需要在功能模型开发建议的指导下,充分发挥知识方法的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信