Collaborative control framework at isolated signalized intersections under the mixed connected automated vehicles environment

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chao Liu, Hongfei Jia, Guanfeng Wang, Ruiyi Wu, Jingjing Tian, Heyao Gao
{"title":"Collaborative control framework at isolated signalized intersections under the mixed connected automated vehicles environment","authors":"Chao Liu, Hongfei Jia, Guanfeng Wang, Ruiyi Wu, Jingjing Tian, Heyao Gao","doi":"10.1111/mice.13371","DOIUrl":null,"url":null,"abstract":"This study proposes a collaborative control framework under the mixed traffic environment of connected and automated vehicles and connected human‐driven vehicles, which can simultaneously optimize the signal timing, lane settings, and vehicle trajectories at isolated intersections. Initially, considering the dynamics of traffic demand and incompatible signals, we analyze the vehicle delay of each lane. Based on the delay analysis, the spatiotemporal resource collaborative optimization model of lane setting and signal timing is established to minimize the average delay. Subsequently, in the buffer zone, a graph‐theoretic‐based sorting and platooning model provides a clear and concise representation of the transformation process from the initial state to the target state of vehicles, enabling the platoon formation. Additionally, trajectory optimization is integrated into the collaborative control framework by the optimal control model and car‐following model in the passing zone. Simulation experiments and sensitivity analyses demonstrate the effectiveness of the proposed framework in reducing average vehicle delay, improving fuel consumption, and coping with changing traffic demand at intersections.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"33 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13371","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a collaborative control framework under the mixed traffic environment of connected and automated vehicles and connected human‐driven vehicles, which can simultaneously optimize the signal timing, lane settings, and vehicle trajectories at isolated intersections. Initially, considering the dynamics of traffic demand and incompatible signals, we analyze the vehicle delay of each lane. Based on the delay analysis, the spatiotemporal resource collaborative optimization model of lane setting and signal timing is established to minimize the average delay. Subsequently, in the buffer zone, a graph‐theoretic‐based sorting and platooning model provides a clear and concise representation of the transformation process from the initial state to the target state of vehicles, enabling the platoon formation. Additionally, trajectory optimization is integrated into the collaborative control framework by the optimal control model and car‐following model in the passing zone. Simulation experiments and sensitivity analyses demonstrate the effectiveness of the proposed framework in reducing average vehicle delay, improving fuel consumption, and coping with changing traffic demand at intersections.
混合互联自动驾驶车辆环境下隔离信号灯路口的协同控制框架
本研究提出了一种在互联自动驾驶车辆和互联人类驾驶车辆混合交通环境下的协同控制框架,可同时优化孤立交叉口的信号配时、车道设置和车辆轨迹。首先,考虑到交通需求和不兼容信号的动态变化,我们分析了每条车道的车辆延迟。在延迟分析的基础上,建立车道设置和信号配时的时空资源协同优化模型,以最小化平均延迟。随后,在缓冲区内,基于图论的排序和排队模型清晰简洁地呈现了车辆从初始状态到目标状态的转变过程,从而实现了排队编队。此外,通过优化控制模型和超车区汽车跟随模型,将轨迹优化整合到协同控制框架中。仿真实验和敏感性分析表明,所提出的框架在减少平均车辆延误、改善燃料消耗和应对交叉路口不断变化的交通需求方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信