{"title":"Event-Enhanced Snapshot Compressive Videography at 10K FPS","authors":"Bo Zhang;Jinli Suo;Qionghai Dai","doi":"10.1109/TPAMI.2024.3496788","DOIUrl":null,"url":null,"abstract":"Video snapshot compressive imaging (SCI) encodes the target dynamic scene compactly into a snapshot and reconstructs its high-speed frame sequence afterward, greatly reducing the required data footprint and transmission bandwidth as well as enabling high-speed imaging with a low frame rate intensity camera. In implementation, high-speed dynamics are encoded via temporally varying patterns, and only frames at corresponding temporal intervals can be reconstructed, while the dynamics occurring between consecutive frames are lost. To unlock the potential of conventional snapshot compressive videography, we propose a novel hybrid “intensity\n<inline-formula><tex-math>$+$</tex-math></inline-formula>\n event imaging scheme by incorporating an event camera into a video SCI setup. Our proposed system consists of a dual-path optical setup to record the coded intensity measurement and intermediate event signals simultaneously, which is compact and photon-efficient by collecting the half photons discarded in conventional video SCI. Correspondingly, we developed a dual-branch Transformer utilizing the reciprocal relationship between two data modes to decode dense video frames. Extensive experiments on both simulated and real-captured data demonstrate our superiority to state-of-the-art video SCI and video frame interpolation (VFI) methods. Benefiting from the new hybrid design leveraging both intrinsic redundancy in videos and the unique feature of event cameras, we achieve high-quality videography at 0.1ms time intervals with a low-cost CMOS image sensor working at 24 FPS.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 2","pages":"1266-1278"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750378/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Video snapshot compressive imaging (SCI) encodes the target dynamic scene compactly into a snapshot and reconstructs its high-speed frame sequence afterward, greatly reducing the required data footprint and transmission bandwidth as well as enabling high-speed imaging with a low frame rate intensity camera. In implementation, high-speed dynamics are encoded via temporally varying patterns, and only frames at corresponding temporal intervals can be reconstructed, while the dynamics occurring between consecutive frames are lost. To unlock the potential of conventional snapshot compressive videography, we propose a novel hybrid “intensity
$+$
event imaging scheme by incorporating an event camera into a video SCI setup. Our proposed system consists of a dual-path optical setup to record the coded intensity measurement and intermediate event signals simultaneously, which is compact and photon-efficient by collecting the half photons discarded in conventional video SCI. Correspondingly, we developed a dual-branch Transformer utilizing the reciprocal relationship between two data modes to decode dense video frames. Extensive experiments on both simulated and real-captured data demonstrate our superiority to state-of-the-art video SCI and video frame interpolation (VFI) methods. Benefiting from the new hybrid design leveraging both intrinsic redundancy in videos and the unique feature of event cameras, we achieve high-quality videography at 0.1ms time intervals with a low-cost CMOS image sensor working at 24 FPS.