Shengyuan Liang;Qimei Cui;Xueqing Huang;Borui Zhao;Yanzhao Hou;Xiaofeng Tao
{"title":"Efficient Hierarchical Federated Services for Heterogeneous Mobile Edge","authors":"Shengyuan Liang;Qimei Cui;Xueqing Huang;Borui Zhao;Yanzhao Hou;Xiaofeng Tao","doi":"10.1109/TSC.2024.3495501","DOIUrl":null,"url":null,"abstract":"As 6G networks actively advance edge intelligence, Federated Learning (FL) emerges as a key technology that enables data sharing while preserving data privacy and fostering collaboration among edge devices for intelligent service learning. However, the multi-dimensional heterogeneous and hierarchical network architecture brings many challenges to FL deployment, including selecting appropriate nodes for model training and designing effective methods for model aggregation. Compared with most studies that focus on solving individual problems within 6G, this paper proposes an efficient deployment scheme named hierarchical heterogeneous FL (HHFL), which comprehensively considers various influencing factors. First, the deployment of HHFL over 6G is modeled amid the heterogeneity of communications, computation, and data. An optimization problem is then formulated, aiming to minimize deployment costs in terms of latency and energy consumption. Subsequently, to tackle this optimization challenge, we design an intelligent FL deployment framework, consisting of a hierarchical aggregation deployment (HAD) component for hierarchical FL aggregation structure construction and an adaptive node selection (ANS) component for selecting diverse clients based on multi-dimensional discrepancy criteria. Experimental results demonstrate that our proposed framework not only adapts to various application requirements but also outperforms existing technologies by achieving superior learning performance, reduced latency, and lower energy consumption.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"140-155"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750008/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As 6G networks actively advance edge intelligence, Federated Learning (FL) emerges as a key technology that enables data sharing while preserving data privacy and fostering collaboration among edge devices for intelligent service learning. However, the multi-dimensional heterogeneous and hierarchical network architecture brings many challenges to FL deployment, including selecting appropriate nodes for model training and designing effective methods for model aggregation. Compared with most studies that focus on solving individual problems within 6G, this paper proposes an efficient deployment scheme named hierarchical heterogeneous FL (HHFL), which comprehensively considers various influencing factors. First, the deployment of HHFL over 6G is modeled amid the heterogeneity of communications, computation, and data. An optimization problem is then formulated, aiming to minimize deployment costs in terms of latency and energy consumption. Subsequently, to tackle this optimization challenge, we design an intelligent FL deployment framework, consisting of a hierarchical aggregation deployment (HAD) component for hierarchical FL aggregation structure construction and an adaptive node selection (ANS) component for selecting diverse clients based on multi-dimensional discrepancy criteria. Experimental results demonstrate that our proposed framework not only adapts to various application requirements but also outperforms existing technologies by achieving superior learning performance, reduced latency, and lower energy consumption.
期刊介绍:
IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.