Efficient Hierarchical Federated Services for Heterogeneous Mobile Edge

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shengyuan Liang;Qimei Cui;Xueqing Huang;Borui Zhao;Yanzhao Hou;Xiaofeng Tao
{"title":"Efficient Hierarchical Federated Services for Heterogeneous Mobile Edge","authors":"Shengyuan Liang;Qimei Cui;Xueqing Huang;Borui Zhao;Yanzhao Hou;Xiaofeng Tao","doi":"10.1109/TSC.2024.3495501","DOIUrl":null,"url":null,"abstract":"As 6G networks actively advance edge intelligence, Federated Learning (FL) emerges as a key technology that enables data sharing while preserving data privacy and fostering collaboration among edge devices for intelligent service learning. However, the multi-dimensional heterogeneous and hierarchical network architecture brings many challenges to FL deployment, including selecting appropriate nodes for model training and designing effective methods for model aggregation. Compared with most studies that focus on solving individual problems within 6G, this paper proposes an efficient deployment scheme named hierarchical heterogeneous FL (HHFL), which comprehensively considers various influencing factors. First, the deployment of HHFL over 6G is modeled amid the heterogeneity of communications, computation, and data. An optimization problem is then formulated, aiming to minimize deployment costs in terms of latency and energy consumption. Subsequently, to tackle this optimization challenge, we design an intelligent FL deployment framework, consisting of a hierarchical aggregation deployment (HAD) component for hierarchical FL aggregation structure construction and an adaptive node selection (ANS) component for selecting diverse clients based on multi-dimensional discrepancy criteria. Experimental results demonstrate that our proposed framework not only adapts to various application requirements but also outperforms existing technologies by achieving superior learning performance, reduced latency, and lower energy consumption.","PeriodicalId":13255,"journal":{"name":"IEEE Transactions on Services Computing","volume":"18 1","pages":"140-155"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Services Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750008/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As 6G networks actively advance edge intelligence, Federated Learning (FL) emerges as a key technology that enables data sharing while preserving data privacy and fostering collaboration among edge devices for intelligent service learning. However, the multi-dimensional heterogeneous and hierarchical network architecture brings many challenges to FL deployment, including selecting appropriate nodes for model training and designing effective methods for model aggregation. Compared with most studies that focus on solving individual problems within 6G, this paper proposes an efficient deployment scheme named hierarchical heterogeneous FL (HHFL), which comprehensively considers various influencing factors. First, the deployment of HHFL over 6G is modeled amid the heterogeneity of communications, computation, and data. An optimization problem is then formulated, aiming to minimize deployment costs in terms of latency and energy consumption. Subsequently, to tackle this optimization challenge, we design an intelligent FL deployment framework, consisting of a hierarchical aggregation deployment (HAD) component for hierarchical FL aggregation structure construction and an adaptive node selection (ANS) component for selecting diverse clients based on multi-dimensional discrepancy criteria. Experimental results demonstrate that our proposed framework not only adapts to various application requirements but also outperforms existing technologies by achieving superior learning performance, reduced latency, and lower energy consumption.
为异构移动边缘提供高效的分层联合服务
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Services Computing
IEEE Transactions on Services Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
11.50
自引率
6.20%
发文量
278
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Services Computing encompasses the computing and software aspects of the science and technology of services innovation research and development. It places emphasis on algorithmic, mathematical, statistical, and computational methods central to services computing. Topics covered include Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance Management, and Services Operations and Management. The transactions address mathematical foundations, security, privacy, agreement, contract, discovery, negotiation, collaboration, and quality of service for web services. It also covers areas like composite web service creation, business and scientific applications, standards, utility models, business process modeling, integration, collaboration, and more in the realm of Services Computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信