Unravelling the incorporation mechanisms of water in aluminous orthoenstatite: II. comprehensive 1H, 29Si and 27Al NMR measurements

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Xianyu Xue, Masami Kanzaki, Rongzhang Yin
{"title":"Unravelling the incorporation mechanisms of water in aluminous orthoenstatite: II. comprehensive 1H, 29Si and 27Al NMR measurements","authors":"Xianyu Xue,&nbsp;Masami Kanzaki,&nbsp;Rongzhang Yin","doi":"10.1007/s00410-024-02182-5","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum has been shown to significantly enhance the water incorporation capacity of orthoenstatite (OEn), but the incorporation mechanisms remained to be clarified. We performed a comprehensive one- and two-dimensional <sup>1</sup>H, <sup>29</sup>Si and <sup>27</sup>Al NMR study on four hydrous aluminous OEn samples containing 1–8 wt% Al<sub>2</sub>O<sub>3</sub> synthesized at 1.5 GPa and 900 °C to clarify the issue. The combined <sup>1</sup>H MAS and static (non-spinning) NMR, <sup>1</sup>H double-quantum and triple-quantum MAS NMR, and <sup>27</sup>Al→<sup>1</sup>H CP MAS NMR and HETCOR results, in particular, unambiguously revealed that a large part of the incorporated water are present as proton pairs in Mg vacancies adjacent to Al, with one proton of each pair for the dominant proton pairs exhibiting significantly weaker hydrogen bonding than those in Al-free OEn. Proton pairs in Mg vacancies remote from Al are minor or absent for samples with 4–8 wt% Al<sub>2</sub>O<sub>3</sub>, and more abundant for a sample with 1 wt% Al<sub>2</sub>O<sub>3</sub>. Isolated protons due to coupled substitutions of Al + H for 1Si and 2Mg (both with weak hydrogen bonding) were also detected, but are less abundant than hitherto considered. The observed NMR peaks match well with those predicted for the corresponding OH defect models from our first-principles calculations. Thus, the enhancement of water solubility by Al for OEn are due to not only coupled substitutions of Al + H for 1Si and 2Mg, but also interactions of Al with proton pairs in Mg vacancies. These mechanisms may also be important in other nominally anhydrous aluminous silicate minerals.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02182-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02182-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum has been shown to significantly enhance the water incorporation capacity of orthoenstatite (OEn), but the incorporation mechanisms remained to be clarified. We performed a comprehensive one- and two-dimensional 1H, 29Si and 27Al NMR study on four hydrous aluminous OEn samples containing 1–8 wt% Al2O3 synthesized at 1.5 GPa and 900 °C to clarify the issue. The combined 1H MAS and static (non-spinning) NMR, 1H double-quantum and triple-quantum MAS NMR, and 27Al→1H CP MAS NMR and HETCOR results, in particular, unambiguously revealed that a large part of the incorporated water are present as proton pairs in Mg vacancies adjacent to Al, with one proton of each pair for the dominant proton pairs exhibiting significantly weaker hydrogen bonding than those in Al-free OEn. Proton pairs in Mg vacancies remote from Al are minor or absent for samples with 4–8 wt% Al2O3, and more abundant for a sample with 1 wt% Al2O3. Isolated protons due to coupled substitutions of Al + H for 1Si and 2Mg (both with weak hydrogen bonding) were also detected, but are less abundant than hitherto considered. The observed NMR peaks match well with those predicted for the corresponding OH defect models from our first-principles calculations. Thus, the enhancement of water solubility by Al for OEn are due to not only coupled substitutions of Al + H for 1Si and 2Mg, but also interactions of Al with proton pairs in Mg vacancies. These mechanisms may also be important in other nominally anhydrous aluminous silicate minerals.

揭示铝质正沸石中水的掺入机制:二、全面的 1H、29Si 和 27Al NMR 测量
铝已被证明能显著提高正沸石(OEn)的水掺入能力,但其掺入机制仍有待澄清。为了澄清这一问题,我们对在 1.5 GPa 和 900 °C 下合成的四种含 1-8 wt% Al2O3 的含水铝 OEn 样品进行了全面的一维和二维 1H、29Si 和 27Al NMR 研究。特别是 1H MAS 和静态(非旋转)核磁共振、1H 双量子和三量子 MAS 核磁共振以及 27Al→1H CP MAS 核磁共振和 HETCOR 的组合结果明确显示,大部分掺入的水以质子对的形式存在于与 Al 相邻的 Mg 空位中,每对质子中的一个质子为主导质子对,其氢键作用明显弱于无 Al OEn 中的质子对。在含有 4-8 wt% Al2O3 的样品中,远离铝的镁空位中的质子对较少或不存在,而在含有 1 wt% Al2O3 的样品中则较多。由于 Al + H 对 1Si 和 2Mg(两者都有弱氢键)的耦合置换而产生的孤立质子也被检测到,但其数量比迄今为止认为的要少。观察到的 NMR 峰与第一原理计算中相应 OH 缺陷模型的预测峰非常吻合。因此,铝对 OEn 水溶性的增强不仅是由于 Al + H 对 1Si 和 2Mg 的耦合置换,还由于 Al 与 Mg 空位中质子对的相互作用。这些机制在其他名义上无水的铝硅酸盐矿物中可能也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信