{"title":"Drainage analysis of the Karanja River basin, Karnataka, India using Geo-informatics","authors":"Pawan Kumar Gautam","doi":"10.1007/s12518-024-00584-5","DOIUrl":null,"url":null,"abstract":"<div><p>A drainage analysis of Karanja River has been carried out using geospatial technique. These methods are considered effective for extracting river basin and their drainage networks. The drainage network extracted was categorized using Strahler’s classification system, revealing a dendritic drainage pattern in the basin. Consequently, the study concludes that remote sensing data, particularly SRTM–DEM data with a 90 m resolution, combined with geoprocessing techniques, serve as an effective tool for conducting morphometric analysis and evaluating linear, areal, relief, geometric, morpho-tectonics and social aspects of morphometric parameters. The Karanja basin covers an area of 2959 km², with the high surface rock permeability, low surface runoff, high infiltration rate, and low erodibility. The main stream length ratio of the basin is 36.29, suggesting that increasing trend between the highest and the lowest stream. The watercourses are elongated due to the shallow relief, resulting in a lower peak flow and a longer flow duration. The basin exhibits a gentle slope, minimal runoff potential, and mature stage of landform evolution. The asymmetric factor indicates the north-eastern shift of the channel. GIS-based analysis of all morphometric parameters, along with the erosional development of the area by the streams, indicates that the landscape has progressed well beyond maturity, with lithology playing a key role in shaping the drainage patterns. Advanced geospatial technology can be applied to geo-hydrological research systems in environmental management, watershed management and land system management, etc. with the future hydrological prospects of the area.</p></div>","PeriodicalId":46286,"journal":{"name":"Applied Geomatics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12518-024-00584-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
A drainage analysis of Karanja River has been carried out using geospatial technique. These methods are considered effective for extracting river basin and their drainage networks. The drainage network extracted was categorized using Strahler’s classification system, revealing a dendritic drainage pattern in the basin. Consequently, the study concludes that remote sensing data, particularly SRTM–DEM data with a 90 m resolution, combined with geoprocessing techniques, serve as an effective tool for conducting morphometric analysis and evaluating linear, areal, relief, geometric, morpho-tectonics and social aspects of morphometric parameters. The Karanja basin covers an area of 2959 km², with the high surface rock permeability, low surface runoff, high infiltration rate, and low erodibility. The main stream length ratio of the basin is 36.29, suggesting that increasing trend between the highest and the lowest stream. The watercourses are elongated due to the shallow relief, resulting in a lower peak flow and a longer flow duration. The basin exhibits a gentle slope, minimal runoff potential, and mature stage of landform evolution. The asymmetric factor indicates the north-eastern shift of the channel. GIS-based analysis of all morphometric parameters, along with the erosional development of the area by the streams, indicates that the landscape has progressed well beyond maturity, with lithology playing a key role in shaping the drainage patterns. Advanced geospatial technology can be applied to geo-hydrological research systems in environmental management, watershed management and land system management, etc. with the future hydrological prospects of the area.
期刊介绍:
Applied Geomatics (AGMJ) is the official journal of SIFET the Italian Society of Photogrammetry and Topography and covers all aspects and information on scientific and technical advances in the geomatics sciences. The Journal publishes innovative contributions in geomatics applications ranging from the integration of instruments, methodologies and technologies and their use in the environmental sciences, engineering and other natural sciences.
The areas of interest include many research fields such as: remote sensing, close range and videometric photogrammetry, image analysis, digital mapping, land and geographic information systems, geographic information science, integrated geodesy, spatial data analysis, heritage recording; network adjustment and numerical processes. Furthermore, Applied Geomatics is open to articles from all areas of deformation measurements and analysis, structural engineering, mechanical engineering and all trends in earth and planetary survey science and space technology. The Journal also contains notices of conferences and international workshops, industry news, and information on new products. It provides a useful forum for professional and academic scientists involved in geomatics science and technology.
Information on Open Research Funding and Support may be found here: https://www.springernature.com/gp/open-research/institutional-agreements