Comparing basal and prismatic slips induced by thermal stresses in 4H-SiC crystals

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-10-11 DOI:10.1039/D4CE00927D
Sheng'ou Lu, Binjie Xu, Lingling Xuan, Xiaodong Pi, Deren Yang and Xuefeng Han
{"title":"Comparing basal and prismatic slips induced by thermal stresses in 4H-SiC crystals","authors":"Sheng'ou Lu, Binjie Xu, Lingling Xuan, Xiaodong Pi, Deren Yang and Xuefeng Han","doi":"10.1039/D4CE00927D","DOIUrl":null,"url":null,"abstract":"<p >Basal and prismatic slips induced by thermoelastic stresses during the growth of 4H-SiC are investigated by using the finite element method (FEM) and considering factors such as the crystal diameter, temperature, and off-axis angle. It is found that with the increase of the crystal diameter from 6 to 8 inches, the prismatic slip more likely occurs, leading to a higher density of basal plane dislocations (BPDs). However, the basal slip hardly changes. The temperature difference, rather than the growth temperature, is the primary factor contributing to the increase in the slip stresses. The stresses of the basal slip are significantly affected by a small off-axis angle, whereas those of the prismatic slip are not unaffected until the off-axis angle reaches 30 degrees. The mechanism for the decrease of the density of BPDs along the growth direction in an 8 inch 4H-SiC crystal is elucidated. We verify that the prismatic slip in an 8 inch 4H-SiC crystal contributes more to the BPD formation than the basal slip.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6244-6254"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00927d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Basal and prismatic slips induced by thermoelastic stresses during the growth of 4H-SiC are investigated by using the finite element method (FEM) and considering factors such as the crystal diameter, temperature, and off-axis angle. It is found that with the increase of the crystal diameter from 6 to 8 inches, the prismatic slip more likely occurs, leading to a higher density of basal plane dislocations (BPDs). However, the basal slip hardly changes. The temperature difference, rather than the growth temperature, is the primary factor contributing to the increase in the slip stresses. The stresses of the basal slip are significantly affected by a small off-axis angle, whereas those of the prismatic slip are not unaffected until the off-axis angle reaches 30 degrees. The mechanism for the decrease of the density of BPDs along the growth direction in an 8 inch 4H-SiC crystal is elucidated. We verify that the prismatic slip in an 8 inch 4H-SiC crystal contributes more to the BPD formation than the basal slip.

Abstract Image

比较热应力在 4H-SiC 晶体中诱发的基底滑移和棱柱滑移
通过使用有限元法(FEM)并考虑晶体直径、温度和离轴角等因素,研究了 4H-SiC 生长过程中由热弹性应力引起的基底位错和棱柱位错。研究发现,随着晶体直径从 6 英寸增大到 8 英寸,棱柱滑移更有可能发生,从而导致基底面位错(BPDs)密度增大。然而,基面滑移几乎没有变化。温差而非生长温度是导致滑移应力增加的主要因素。基底滑移的应力受小偏轴角的影响很大,而棱柱滑移的应力在偏轴角达到 30 度之前并非不受影响。我们阐明了 8 英寸 4H-SiC 晶体中 BPD 密度沿生长方向降低的机理。我们验证了在 8 英寸 4H-SiC 晶体中棱柱滑移比基底滑移对 BPD 形成的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信