{"title":"IAMSAM: image-based analysis of molecular signatures using the Segment Anything Model","authors":"Dongjoo Lee, Jeongbin Park, Seungho Cook, Seongjin Yoo, Daeseung Lee, Hongyoon Choi","doi":"10.1186/s13059-024-03380-x","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics is a cutting-edge technique that combines gene expression with spatial information, allowing researchers to study molecular patterns within tissue architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing spatial transcriptomics data focusing on morphological features. IAMSAM accurately segments tissue images using the Segment Anything Model, allowing for the semi-automatic selection of regions of interest based on morphological signatures. Furthermore, IAMSAM provides downstream analysis, such as identifying differentially expressed genes, enrichment analysis, and cell type prediction within the selected regions. With its simple interface, IAMSAM empowers researchers to explore and interpret heterogeneous tissues in a streamlined manner.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"409 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03380-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial transcriptomics is a cutting-edge technique that combines gene expression with spatial information, allowing researchers to study molecular patterns within tissue architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing spatial transcriptomics data focusing on morphological features. IAMSAM accurately segments tissue images using the Segment Anything Model, allowing for the semi-automatic selection of regions of interest based on morphological signatures. Furthermore, IAMSAM provides downstream analysis, such as identifying differentially expressed genes, enrichment analysis, and cell type prediction within the selected regions. With its simple interface, IAMSAM empowers researchers to explore and interpret heterogeneous tissues in a streamlined manner.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.