Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer
{"title":"Evidence of Zero-Field Wigner Solids in Ultrathin Films of Cadmium Arsenide","authors":"Simon Munyan, Sina Ahadi, Binghao Guo, Arman Rashidi, Susanne Stemmer","doi":"10.1103/physrevx.14.041037","DOIUrl":null,"url":null,"abstract":"The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (<mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C d 3 upper A s 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">C</mjx-c><mjx-c style=\"padding-top: 0.706em;\">d</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.662em;\">A</mjx-c><mjx-c style=\"padding-top: 0.662em;\">s</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the Wigner solid is closely connected to a topological transition as the film thickness is reduced.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"95 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041037","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum Wigner crystal is a many-body state where Coulombic repulsion quenches the kinetic energy of electrons, causing them to crystallize into a lattice. Experimental realization of a quantum Wigner crystal at zero magnetic field has been a long-sought goal. Here, we report on the experimental evidence of a Wigner solid in ultra-thin films of cadmium arsenide (Cd3As2) at zero magnetic field. We show that a finite bias depins the domains and produces an unusually sharp-threshold current-voltage behavior. Hysteresis and voltage fluctuations point to domain motion across the pinning potential and disappear at finite temperature as thermal fluctuations overcome the potential. The application of a small magnetic field destroys the Wigner solid, pointing to an unconventional origin. We use Landau-level spectroscopy to show that the formation of the Wigner solid is closely connected to a topological transition as the film thickness is reduced.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.