Experimental and theoretical model study on grouting reinforcement effect of fractured rock mass

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hui Wang, Hairong Yu, Xiaotong Zhang, Hongyu Zhuo, Jitao Jia, Haosong Wang, Hongyuan Huai
{"title":"Experimental and theoretical model study on grouting reinforcement effect of fractured rock mass","authors":"Hui Wang, Hairong Yu, Xiaotong Zhang, Hongyu Zhuo, Jitao Jia, Haosong Wang, Hongyuan Huai","doi":"10.1177/10567895241297699","DOIUrl":null,"url":null,"abstract":"The mechanical properties of fractured rock mass have an important influence on the safety and stability of underground engineering. Grouting is a common way to reinforce fractured rock mass. The uniaxial compression tests of red sandstone specimens with different prefabricated crack inclination angles before and after grouting were carried out. Based on the load-deformation data and synchronous image acquisition, the mechanical properties, crack propagation law and failure mode of the specimens before and after grouting were studied. The results show that the peak strength and elastic modulus of the ungrouted specimen increase with the increase of the inclination angle of the prefabricated crack. Compared with the ungrouted specimen, grouting can significantly improve the peak strength and elastic modulus of the specimen. The cracks of the ungrouted specimen mainly initiate from the tip of the prefabricated crack, and the cracks of the grouting specimen mainly initiate from the upper and lower surfaces of the specimen and the far field. Based on the macroscopic and microscopic damage theory, the constitutive model of grouting rock mass is proposed. By comparing with the experimental data, the rationality of the constitutive model is verified.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"35 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241297699","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of fractured rock mass have an important influence on the safety and stability of underground engineering. Grouting is a common way to reinforce fractured rock mass. The uniaxial compression tests of red sandstone specimens with different prefabricated crack inclination angles before and after grouting were carried out. Based on the load-deformation data and synchronous image acquisition, the mechanical properties, crack propagation law and failure mode of the specimens before and after grouting were studied. The results show that the peak strength and elastic modulus of the ungrouted specimen increase with the increase of the inclination angle of the prefabricated crack. Compared with the ungrouted specimen, grouting can significantly improve the peak strength and elastic modulus of the specimen. The cracks of the ungrouted specimen mainly initiate from the tip of the prefabricated crack, and the cracks of the grouting specimen mainly initiate from the upper and lower surfaces of the specimen and the far field. Based on the macroscopic and microscopic damage theory, the constitutive model of grouting rock mass is proposed. By comparing with the experimental data, the rationality of the constitutive model is verified.
裂隙岩体灌浆加固效应的实验和理论模型研究
断裂岩体的力学性能对地下工程的安全性和稳定性有重要影响。灌浆是加固断裂岩体的常用方法。对不同预制裂缝倾角的红砂岩试样进行了灌浆前后的单轴压缩试验。基于载荷-变形数据和同步图像采集,研究了灌浆前后试样的力学性能、裂纹扩展规律和破坏模式。结果表明,未灌浆试样的峰值强度和弹性模量随预制裂缝倾角的增大而增大。与未灌浆试样相比,灌浆能显著提高试样的峰值强度和弹性模量。未灌浆试样的裂缝主要从预制裂缝的顶端开始,而灌浆试样的裂缝主要从试样的上下表面和远场开始。基于宏观和微观损伤理论,提出了灌浆岩体的构成模型。通过与实验数据的对比,验证了构成模型的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信