{"title":"On injective chromatic index of sparse graphs with maximum degree 5","authors":"Jian Lu, Zhen-Mu Hong, Zheng-Jiang Xia","doi":"10.1007/s10878-024-01234-7","DOIUrl":null,"url":null,"abstract":"<p>A <i>k</i>-edge coloring <span>\\(\\varphi \\)</span> of a graph <i>G</i> is injective if <span>\\(\\varphi (e_1)\\ne \\varphi (e_3)\\)</span> for any three consecutive edges <span>\\(e_1, e_2\\)</span> and <span>\\(e_3\\)</span> of a path or a triangle. The injective chromatic index <span>\\(\\chi _i'(G)\\)</span> of <i>G</i> is the smallest <i>k</i> such that <i>G</i> admits an injective <i>k</i>-edge coloring. By discharging method, we demonstrate that any graph with maximum degree <span>\\(\\Delta \\le 5\\)</span> has <span>\\(\\chi _i'(G)\\le 12\\)</span> (resp. 13) if its maximum average degree is less than <span>\\(\\frac{20}{7}\\)</span> (resp. 3), which improves the results of Zhu (2023).\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01234-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A k-edge coloring \(\varphi \) of a graph G is injective if \(\varphi (e_1)\ne \varphi (e_3)\) for any three consecutive edges \(e_1, e_2\) and \(e_3\) of a path or a triangle. The injective chromatic index \(\chi _i'(G)\) of G is the smallest k such that G admits an injective k-edge coloring. By discharging method, we demonstrate that any graph with maximum degree \(\Delta \le 5\) has \(\chi _i'(G)\le 12\) (resp. 13) if its maximum average degree is less than \(\frac{20}{7}\) (resp. 3), which improves the results of Zhu (2023).