On injective chromatic index of sparse graphs with maximum degree 5

Pub Date : 2024-11-07 DOI:10.1007/s10878-024-01234-7
Jian Lu, Zhen-Mu Hong, Zheng-Jiang Xia
{"title":"On injective chromatic index of sparse graphs with maximum degree 5","authors":"Jian Lu, Zhen-Mu Hong, Zheng-Jiang Xia","doi":"10.1007/s10878-024-01234-7","DOIUrl":null,"url":null,"abstract":"<p>A <i>k</i>-edge coloring <span>\\(\\varphi \\)</span> of a graph <i>G</i> is injective if <span>\\(\\varphi (e_1)\\ne \\varphi (e_3)\\)</span> for any three consecutive edges <span>\\(e_1, e_2\\)</span> and <span>\\(e_3\\)</span> of a path or a triangle. The injective chromatic index <span>\\(\\chi _i'(G)\\)</span> of <i>G</i> is the smallest <i>k</i> such that <i>G</i> admits an injective <i>k</i>-edge coloring. By discharging method, we demonstrate that any graph with maximum degree <span>\\(\\Delta \\le 5\\)</span> has <span>\\(\\chi _i'(G)\\le 12\\)</span> (resp. 13) if its maximum average degree is less than <span>\\(\\frac{20}{7}\\)</span> (resp. 3), which improves the results of Zhu (2023).\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01234-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A k-edge coloring \(\varphi \) of a graph G is injective if \(\varphi (e_1)\ne \varphi (e_3)\) for any three consecutive edges \(e_1, e_2\) and \(e_3\) of a path or a triangle. The injective chromatic index \(\chi _i'(G)\) of G is the smallest k such that G admits an injective k-edge coloring. By discharging method, we demonstrate that any graph with maximum degree \(\Delta \le 5\) has \(\chi _i'(G)\le 12\) (resp. 13) if its maximum average degree is less than \(\frac{20}{7}\) (resp. 3), which improves the results of Zhu (2023).

Abstract Image

分享
查看原文
论最大阶数为 5 的稀疏图的注入色度指数
如果对于路径或三角形的任意三条连续边\(e_1, e_2\) 和\(e_3\),图 G 的 k 边着色(\varphi \)是可注入的,那么\(\varphi (e_1)\ne \varphi (e_3)\)就是可注入的。G 的注入色度指数 \(\chi _i'(G)\)是使 G 允许注入 k 边着色的最小 k。通过放电法,我们证明了任何最大度为 \(\Delta \le 5\) 的图,如果它的最大平均度小于 \(\frac{20}{7}\) (resp.3),就有\(\chi _i'(G)\le 12\) (resp.13),这改进了 Zhu (2023) 的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信