Sebastian Bichelmaier, Jesús Carrete, Georg K. H. Madsen
{"title":"Neural network enabled molecular dynamics study ofHfO2phase transitions","authors":"Sebastian Bichelmaier, Jesús Carrete, Georg K. H. Madsen","doi":"10.1103/physrevb.110.174105","DOIUrl":null,"url":null,"abstract":"The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which <i>ab initio</i> MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal r squared upper S upper C upper A upper N\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>r</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">A</mjx-c><mjx-c style=\"padding-top: 0.669em;\">N</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> potential energy landscape of <mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper H f upper O 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.713em;\">H</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.713em;\">f</mjx-c><mjx-c style=\"padding-top: 0.713em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. Based on an automatic differentiable implementation of the isothermal-isobaric <mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(8 0 (7 1 5 2 6 3) 4)\"><mjx-mrow data-semantic-children=\"7\" data-semantic-content=\"0,4\" data-semantic- data-semantic-owns=\"0 7 4\" data-semantic-role=\"leftright\" data-semantic-speech=\"left parenthesis upper N upper P upper T right parenthesis\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,2,3\" data-semantic-content=\"5,6\" data-semantic- data-semantic-owns=\"1 5 2 6 3\" data-semantic-parent=\"8\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑁</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑃</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"8\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-math></mjx-container> ensemble with flexible cell fluctuations, we study the phase space of <mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper H f upper O 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.713em;\">H</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.713em;\">f</mjx-c><mjx-c style=\"padding-top: 0.713em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. We find excellent predictive capabilities regarding the lattice constants and experimental x-ray diffraction data. The phase transition away from monoclinic is clearly visible at a temperature around 2000 K, in agreement with available experimental data and previous calculations. Another abrupt change in lattice constants occurs around 3000 K. While the resulting lattice constants are closer to cubic, they exhibit a small tetragonal distortion, and there is no associated change in volume. We show that this high-temperature structure is in agreement with the available high-temperature diffraction data.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"70 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174105","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The advances of machine-learned force fields have opened up molecular dynamics (MD) simulations for compounds for which ab initio MD is too resource intensive and phenomena for which classical force fields are insufficient. Here we describe a neural-network force field parametrized to reproduce the r2SCAN potential energy landscape of HfO2. Based on an automatic differentiable implementation of the isothermal-isobaric (𝑁𝑃𝑇) ensemble with flexible cell fluctuations, we study the phase space of HfO2. We find excellent predictive capabilities regarding the lattice constants and experimental x-ray diffraction data. The phase transition away from monoclinic is clearly visible at a temperature around 2000 K, in agreement with available experimental data and previous calculations. Another abrupt change in lattice constants occurs around 3000 K. While the resulting lattice constants are closer to cubic, they exhibit a small tetragonal distortion, and there is no associated change in volume. We show that this high-temperature structure is in agreement with the available high-temperature diffraction data.
机器学习力场的进步为分子动力学(MD)模拟开辟了新的途径,可以模拟那些因ab initio MD过于耗费资源而无法进行的化合物,以及那些经典力场无法充分模拟的现象。在此,我们描述了一种神经网络力场,其参数化的目的是重现 HfO2 的 r2SCAN 势能图。基于等温-等压(𝑁𝑃𝑇)集合的自动可微分实现,以及灵活的单元波动,我们研究了 HfO2 的相空间。我们发现晶格常数和 X 射线衍射实验数据具有极佳的预测能力。在 2000 K 左右的温度下,可以清楚地看到单斜相的转变,这与现有的实验数据和以前的计算结果一致。晶格常数的另一个突然变化发生在 3000 K 左右。虽然由此产生的晶格常数更接近立方体,但它们表现出很小的四方畸变,而且体积没有相关变化。我们的研究表明,这种高温结构与现有的高温衍射数据一致。
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter