Angle-resolved photoelectron spectroscopy of the(8.88×8.88)incommensurate surface reconstruction of Cu on Ge(111)

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Mathis Cameau, Tristan Cren, Pascal David, François Debontridder, Natalia Olszowska, Marcin Rosmus, Mathieu G. Silly, Marie D'angelo
{"title":"Angle-resolved photoelectron spectroscopy of the(8.88×8.88)incommensurate surface reconstruction of Cu on Ge(111)","authors":"Mathis Cameau, Tristan Cren, Pascal David, François Debontridder, Natalia Olszowska, Marcin Rosmus, Mathieu G. Silly, Marie D'angelo","doi":"10.1103/physrevb.110.205414","DOIUrl":null,"url":null,"abstract":"In this study we revisit the properties of the <mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(16 (9 0 (8 1 (7 2 3 4) 5) 6) 14 10 15 (13 11 12))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"9,10,13\" data-semantic-content=\"14,15\" data-semantic- data-semantic-owns=\"9 14 10 15 13\" data-semantic-role=\"implicit\" data-semantic-speech=\"left parenthesis quotation mark 8.88 times 8.88 quotation mark right parenthesis normal upper R 30 Superscript ring\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-children=\"8\" data-semantic-content=\"0,6\" data-semantic- data-semantic-owns=\"0 8 6\" data-semantic-parent=\"16\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"1,7,5\" data-semantic-content=\"1,5\" data-semantic- data-semantic-owns=\"1 7 5\" data-semantic-parent=\"9\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"quotes\" data-semantic-type=\"punctuation\"><mjx-c>″</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"8\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>×</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"8\" data-semantic-role=\"quotes\" data-semantic-type=\"punctuation\"><mjx-c>″</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"9\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"16\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>R</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"16\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"11,12\" data-semantic- data-semantic-owns=\"11 12\" data-semantic-parent=\"16\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">3</mjx-c><mjx-c style=\"padding-top: 0.644em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.371em;\"><mjx-mo data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" size=\"s\"><mjx-c>∘</mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container> surface reconstruction obtained by evaporation of Cu on Ge(111), motivated by the predictions of Dirac nodal lines in two-dimensional <mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper C u 2 upper G e\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c style=\"padding-top: 0.669em;\">u</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">G</mjx-c><mjx-c style=\"padding-top: 0.669em;\">e</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> monolayer. After providing an updated version of the band structure of Ge(111) by angle-resolved photoemission (ARPES), we present the band structure of the <mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(25 (21 0 1 (20 2 19 (18 3 4 5))) 6 (24 (13 7 (12 8 9 10) 11) 22 14 23 (17 15 16)))\"><mjx-mrow data-semantic-children=\"21,24\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"21 6 24\" data-semantic-role=\"subtraction\" data-semantic-speech=\"upper C u divided by upper G e left parenthesis 111 right parenthesis minus left parenthesis 8.88 times 8.88 right parenthesis normal upper R 30 Superscript ring\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,20\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 20\" data-semantic-parent=\"25\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c style=\"padding-top: 0.669em;\">u</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"21\" data-semantic-role=\"division\" data-semantic-type=\"operator\" space=\"2\"><mjx-c>/</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,18\" data-semantic-content=\"19,2\" data-semantic- data-semantic-owns=\"2 19 18\" data-semantic-parent=\"21\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"20\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">G</mjx-c><mjx-c style=\"padding-top: 0.669em;\">e</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"20\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4\" data-semantic-content=\"3,5\" data-semantic- data-semantic-owns=\"3 4 5\" data-semantic-parent=\"20\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" space=\"2\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"18\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"18\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">1</mjx-c><mjx-c style=\"padding-top: 0.639em;\">1</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"18\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"25\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" space=\"2\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"13,14,17\" data-semantic-content=\"22,23\" data-semantic- data-semantic-owns=\"13 22 14 23 17\" data-semantic-parent=\"25\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"2\"><mjx-mrow data-semantic-children=\"12\" data-semantic-content=\"7,11\" data-semantic- data-semantic-owns=\"7 12 11\" data-semantic-parent=\"24\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"8,10\" data-semantic-content=\"9\" data-semantic- data-semantic-owns=\"8 9 10\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>×</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.647em;\">8</mjx-c><mjx-c style=\"padding-top: 0.647em;\">8</mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"13\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>R</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"24\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"15,16\" data-semantic- data-semantic-owns=\"15 16\" data-semantic-parent=\"24\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">3</mjx-c><mjx-c style=\"padding-top: 0.644em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.371em;\"><mjx-mo data-semantic- data-semantic-parent=\"17\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" size=\"s\"><mjx-c>∘</mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-math></mjx-container> surface, which presents two surface bands, with having linear dispersion at the Fermi level.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"23 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In this study we revisit the properties of the (8.88×8.88)R30 surface reconstruction obtained by evaporation of Cu on Ge(111), motivated by the predictions of Dirac nodal lines in two-dimensional Cu2Ge monolayer. After providing an updated version of the band structure of Ge(111) by angle-resolved photoemission (ARPES), we present the band structure of the Cu/Ge(111)(8.88×8.88)R30 surface, which presents two surface bands, with having linear dispersion at the Fermi level.
Ge(111) 上铜的(8.88×8.88)不对称表面重构的角度分辨光电子能谱学
在本研究中,我们根据二维 Cu2Ge 单层中狄拉克结点线的预测,重新审视了通过在 Ge(111) 上蒸发 Cu 而获得的 (″8.88×8.88″)R30∘ 表面重构的特性。在通过角度分辨光发射(ARPES)提供了最新版的 Ge(111) 带结构之后,我们提出了 Cu/Ge(111)-(8.88×8.88)R30∘ 表面的带结构,它呈现出两个表面带,在费米级具有线性色散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信