{"title":"Competitive multiple phase transitions and distinct superconducting states in aRe3Ge7single crystal under hydrostatic pressure","authors":"Chenglin Li, BinBin Ruan, Qingxin Dong, Pengtao Yang, Guorui Xiao, Tong Shi, Zhaoming Tian, Jianping Sun, Yoshiya Uwatoko, Genfu Chen, Zhi Ren, Gang Wang, Zhian Ren, Bosen Wang, Jinguang Cheng","doi":"10.1103/physrevb.110.184507","DOIUrl":null,"url":null,"abstract":"We report the growth and physical properties of high-quality needle-shaped <mjx-container ctxtmenu_counter=\"38\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(11 0 8 (3 1 2) 9 4 10 (7 5 6))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4,7\" data-semantic-content=\"8,9,10\" data-semantic- data-semantic-owns=\"0 8 3 9 4 10 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper R normal e 3 normal upper G normal e 7\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>R</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>G</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>7</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> single crystal with various characterizations. It exhibits a gapped metal-insulator (MI)-like phase transition with evident Shubnikov–de Haas oscillation of low-<mjx-container ctxtmenu_counter=\"39\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> electrical resistivity. The superconducting phase diagram was revisited by measuring the electrical resistivity in a cubic anvil cell (CAC) under various hydrostatic pressures up to 12 GPa. Unlike the results of single crystals in a diamond anvil cell (DAC) and polycrystalline in CAC, the gapped MI-like phase transition of single-crystal <mjx-container ctxtmenu_counter=\"40\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(11 0 8 (3 1 2) 9 4 10 (7 5 6))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3,4,7\" data-semantic-content=\"8,9,10\" data-semantic- data-semantic-owns=\"0 8 3 9 4 10 7\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper R normal e 3 normal upper G normal e 7\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>R</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>G</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"11\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"11\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>7</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> evolves into three charge density wave (CDW)-like ones, which are reduced gradually by applied pressure and then collapse at several critical pressures; approaching the CDW-like quantum criticality, two distinct superconducting phases emerge and transit from one to another in a narrow pressure range; the significant increase in superconducting width indicates their strong competition. By combining density functional theory calculations, the origin of the melting MI-like transition caused by pressure and Ga doping, as well as the competitive CDW-like phase transitions and distinct superconductivity, are discussed.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"18 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.184507","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We report the growth and physical properties of high-quality needle-shaped Re3Ge7 single crystal with various characterizations. It exhibits a gapped metal-insulator (MI)-like phase transition with evident Shubnikov–de Haas oscillation of low-𝑇 electrical resistivity. The superconducting phase diagram was revisited by measuring the electrical resistivity in a cubic anvil cell (CAC) under various hydrostatic pressures up to 12 GPa. Unlike the results of single crystals in a diamond anvil cell (DAC) and polycrystalline in CAC, the gapped MI-like phase transition of single-crystal Re3Ge7 evolves into three charge density wave (CDW)-like ones, which are reduced gradually by applied pressure and then collapse at several critical pressures; approaching the CDW-like quantum criticality, two distinct superconducting phases emerge and transit from one to another in a narrow pressure range; the significant increase in superconducting width indicates their strong competition. By combining density functional theory calculations, the origin of the melting MI-like transition caused by pressure and Ga doping, as well as the competitive CDW-like phase transitions and distinct superconductivity, are discussed.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter