F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita
{"title":"Tuning terahertz magnons in a mixed van der Waals antiferromagnet","authors":"F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita","doi":"10.1103/physrevb.110.174414","DOIUrl":null,"url":null,"abstract":"Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets <mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper F e upper P upper S 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">e</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">P</mjx-c><mjx-c style=\"padding-top: 0.669em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper P upper S 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">P</mjx-c><mjx-c style=\"padding-top: 0.673em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(14 (5 0 (4 1 2 3)) 12 (8 6 7) 13 (11 9 10))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,8,11\" data-semantic-content=\"12,13\" data-semantic- data-semantic-owns=\"5 12 8 13 11\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper F e Subscript 1 minus x Baseline upper N i Subscript x Baseline upper P upper S 3\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c style=\"padding-top: 0.657em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c style=\"padding-top: 0.673em;\">i</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">P</mjx-c><mjx-c style=\"padding-top: 0.669em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets FePS3 and NiPS3. These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe1−𝑥Ni𝑥PS3 alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter