Tuning terahertz magnons in a mixed van der Waals antiferromagnet

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita
{"title":"Tuning terahertz magnons in a mixed van der Waals antiferromagnet","authors":"F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita","doi":"10.1103/physrevb.110.174414","DOIUrl":null,"url":null,"abstract":"Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets <mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper F e upper P upper S 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">F</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">e</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">P</mjx-c><mjx-c style=\"padding-top: 0.669em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper P upper S 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">P</mjx-c><mjx-c style=\"padding-top: 0.673em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>. These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the <mjx-container ctxtmenu_counter=\"12\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(14 (5 0 (4 1 2 3)) 12 (8 6 7) 13 (11 9 10))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,8,11\" data-semantic-content=\"12,13\" data-semantic- data-semantic-owns=\"5 12 8 13 11\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper F e Subscript 1 minus x Baseline upper N i Subscript x Baseline upper P upper S 3\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,4\" data-semantic- data-semantic-owns=\"0 4\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c style=\"padding-top: 0.657em;\">e</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow data-semantic-children=\"1,3\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"5\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\" size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"4\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c style=\"padding-top: 0.673em;\">i</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑥</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"9,10\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">P</mjx-c><mjx-c style=\"padding-top: 0.669em;\">S</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.174414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets FePS3 and NiPS3. These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the Fe1𝑥Ni𝑥PS3 alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.
在混合范德华反铁磁体中调谐太赫兹磁子
合金作为一种关键的技术方法,被广泛应用于各种化合物(无论是金属、磁性还是半导体)中,用于微调其特性以满足特定要求。三元半导体就是此类合金的一个突出例子。它们可以对电子带,尤其是带隙进行微调,从而推动了半导体异质结构器件技术的发展,而这正是当前电子学和光电子学的关键要素。在磁有序系统领域,类似于固体中的电子带,自旋波表现出特有的色散关系,在许多反铁磁体中具有相当大的磁子间隙。磁子间隙工程学是当前反铁磁体研究的一个相关方向,目的是利用其独特的特性来实现太赫兹技术、自旋电子学或磁电子学。在本研究中,我们展示了在由代表性半导体范德华反铁磁体 FePS3 和 NiPS3 组成的合金中,磁子间隙在太赫兹光谱范围内的可调谐性。这些成分具有相同的面内晶体结构、磁单元和磁各向异性方向,但后者的振幅和符号有所不同。这些特性共同导致了 Fe1-𝑥Ni𝑥PS3 合金中磁子间隙的广泛可调性,在这种合金中,磁序是由铁的较强垂直各向异性强加的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信