Jakkapat Seeyangnok, Udomsilp Pinsook, Graeme J. Ackland
{"title":"Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers","authors":"Jakkapat Seeyangnok, Udomsilp Pinsook, Graeme J. Ackland","doi":"10.1103/physrevb.110.195408","DOIUrl":null,"url":null,"abstract":"Janus transition metal-dichalcogenide materials have attracted a great deal of attention due to their remarkable physical properties arising from the two-dimensional geometry and the breakdown of the out-of-plane symmetry. Using first-principles density functional theory, we investigated the phase stability, strain-enhanced phase stability, and superconductivity of Janus WSeH and WSH. In addition, we investigated the contribution of the phonon linewidths from the phonon energy spectrum responsible for the superconductivity and the electron-phonon coupling as a function of phonon wave vectors and modes. Previous work has examined hexagonal 2H and tetragonal 1T structures, but we found that neither is a ground-state structure. The metastable 2H phase of WSeH is dynamically stable with <mjx-container ctxtmenu_counter=\"55\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 (2 0 1) 3 (8 4 7 6))\"><mjx-mrow data-semantic-children=\"2,8\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 8\" data-semantic-role=\"equality\" data-semantic-speech=\"normal upper T Subscript c Baseline almost equals 11.60 normal upper K\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,≈\" data-semantic-parent=\"9\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≈</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"4 7 6\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c style=\"padding-top: 0.646em;\">0</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.4em;\"></mjx-mspace><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>K</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, similar to WSH. Compressive biaxial strain—the two-dimensional equivalent of pressure—can stabilize the 1T structures of WSeH and WSH with <mjx-container ctxtmenu_counter=\"56\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 (2 0 1) 3 (8 4 7 6))\"><mjx-mrow data-semantic-children=\"2,8\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 8\" data-semantic-role=\"equality\" data-semantic-speech=\"normal upper T Subscript c Baseline almost equals 9.23 normal upper K\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,≈\" data-semantic-parent=\"9\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≈</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"4 7 6\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">2</mjx-c><mjx-c style=\"padding-top: 0.646em;\">3</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.4em;\"></mjx-mspace><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>K</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container> and 10.52 K, respectively.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"16 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195408","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Janus transition metal-dichalcogenide materials have attracted a great deal of attention due to their remarkable physical properties arising from the two-dimensional geometry and the breakdown of the out-of-plane symmetry. Using first-principles density functional theory, we investigated the phase stability, strain-enhanced phase stability, and superconductivity of Janus WSeH and WSH. In addition, we investigated the contribution of the phonon linewidths from the phonon energy spectrum responsible for the superconductivity and the electron-phonon coupling as a function of phonon wave vectors and modes. Previous work has examined hexagonal 2H and tetragonal 1T structures, but we found that neither is a ground-state structure. The metastable 2H phase of WSeH is dynamically stable with T𝑐≈11.60K, similar to WSH. Compressive biaxial strain—the two-dimensional equivalent of pressure—can stabilize the 1T structures of WSeH and WSH with T𝑐≈9.23K and 10.52 K, respectively.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter