Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Jakkapat Seeyangnok, Udomsilp Pinsook, Graeme J. Ackland
{"title":"Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers","authors":"Jakkapat Seeyangnok, Udomsilp Pinsook, Graeme J. Ackland","doi":"10.1103/physrevb.110.195408","DOIUrl":null,"url":null,"abstract":"Janus transition metal-dichalcogenide materials have attracted a great deal of attention due to their remarkable physical properties arising from the two-dimensional geometry and the breakdown of the out-of-plane symmetry. Using first-principles density functional theory, we investigated the phase stability, strain-enhanced phase stability, and superconductivity of Janus WSeH and WSH. In addition, we investigated the contribution of the phonon linewidths from the phonon energy spectrum responsible for the superconductivity and the electron-phonon coupling as a function of phonon wave vectors and modes. Previous work has examined hexagonal 2H and tetragonal 1T structures, but we found that neither is a ground-state structure. The metastable 2H phase of WSeH is dynamically stable with <mjx-container ctxtmenu_counter=\"55\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 (2 0 1) 3 (8 4 7 6))\"><mjx-mrow data-semantic-children=\"2,8\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 8\" data-semantic-role=\"equality\" data-semantic-speech=\"normal upper T Subscript c Baseline almost equals 11.60 normal upper K\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,≈\" data-semantic-parent=\"9\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≈</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"4 7 6\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c style=\"padding-top: 0.646em;\">0</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.4em;\"></mjx-mspace><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>K</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, similar to WSH. Compressive biaxial strain—the two-dimensional equivalent of pressure—can stabilize the 1T structures of WSeH and WSH with <mjx-container ctxtmenu_counter=\"56\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 (2 0 1) 3 (8 4 7 6))\"><mjx-mrow data-semantic-children=\"2,8\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 8\" data-semantic-role=\"equality\" data-semantic-speech=\"normal upper T Subscript c Baseline almost equals 9.23 normal upper K\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>T</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"relseq,≈\" data-semantic-parent=\"9\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>≈</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"4 7 6\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">9</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">2</mjx-c><mjx-c style=\"padding-top: 0.646em;\">3</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.4em;\"></mjx-mspace><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>K</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container> and 10.52 K, respectively.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"16 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195408","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Janus transition metal-dichalcogenide materials have attracted a great deal of attention due to their remarkable physical properties arising from the two-dimensional geometry and the breakdown of the out-of-plane symmetry. Using first-principles density functional theory, we investigated the phase stability, strain-enhanced phase stability, and superconductivity of Janus WSeH and WSH. In addition, we investigated the contribution of the phonon linewidths from the phonon energy spectrum responsible for the superconductivity and the electron-phonon coupling as a function of phonon wave vectors and modes. Previous work has examined hexagonal 2H and tetragonal 1T structures, but we found that neither is a ground-state structure. The metastable 2H phase of WSeH is dynamically stable with T𝑐11.60K, similar to WSH. Compressive biaxial strain—the two-dimensional equivalent of pressure—can stabilize the 1T structures of WSeH and WSH with T𝑐9.23K and 10.52 K, respectively.
Janus钨瑀氢化物单层的超导性和应变增强型相稳定性
Janus 过渡金属二掺镓材料因其二维几何形状和平面外对称性的破坏而具有显著的物理性质,因而引起了广泛的关注。我们利用第一原理密度泛函理论研究了 Janus WSeH 和 WSH 的相稳定性、应变增强相稳定性和超导性。此外,我们还研究了声子能谱中声子线宽对超导性的贡献,以及电子-声子耦合作为声子波矢量和模式函数的作用。以前的工作研究了六方 2H 和四方 1T 结构,但我们发现这两种结构都不是基态结构。WSeH 的可蜕变 2H 相动态稳定,温度𝑐≈11.60K,与 WSH 相似。压缩双轴应变--相当于压力的二维应变--可以稳定 WSeH 和 WSH 的 1T 结构,其温度分别为𝑐≈9.23K 和 10.52K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信