{"title":"Phase-space negativity as a computational resource for quantum kernel methods","authors":"Ulysse Chabaud, Roohollah Ghobadi, Salman Beigi, Saleh Rahimi-Keshari","doi":"10.22331/q-2024-11-07-1519","DOIUrl":null,"url":null,"abstract":"Quantum kernel methods are a proposal for achieving quantum computational advantage in machine learning. They are based on a hybrid classical-quantum computation where a function called the quantum kernel is estimated by a quantum device while the rest of computation is performed classically. Quantum advantages may be achieved through this method only if the quantum kernel function cannot be estimated efficiently on a classical computer. In this paper, we provide sufficient conditions for the efficient classical estimation of quantum kernel functions for bosonic systems. These conditions are based on phase-space properties of data-encoding quantum states associated with the quantum kernels: negative volume, non-classical depth, and excess range, which are shown to be three signatures of phase-space negativity. We consider quantum optical examples involving linear-optical networks with and without adaptive non-Gaussian measurements, and investigate the effects of loss on the efficiency of the classical simulation. Our results underpin the role of the negativity in phase-space quasi-probability distributions as an essential resource in quantum machine learning based on kernel methods.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"38 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-07-1519","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum kernel methods are a proposal for achieving quantum computational advantage in machine learning. They are based on a hybrid classical-quantum computation where a function called the quantum kernel is estimated by a quantum device while the rest of computation is performed classically. Quantum advantages may be achieved through this method only if the quantum kernel function cannot be estimated efficiently on a classical computer. In this paper, we provide sufficient conditions for the efficient classical estimation of quantum kernel functions for bosonic systems. These conditions are based on phase-space properties of data-encoding quantum states associated with the quantum kernels: negative volume, non-classical depth, and excess range, which are shown to be three signatures of phase-space negativity. We consider quantum optical examples involving linear-optical networks with and without adaptive non-Gaussian measurements, and investigate the effects of loss on the efficiency of the classical simulation. Our results underpin the role of the negativity in phase-space quasi-probability distributions as an essential resource in quantum machine learning based on kernel methods.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.