Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, T. Zhang
{"title":"Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors","authors":"C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, T. Zhang","doi":"10.1103/physrevx.14.041039","DOIUrl":null,"url":null,"abstract":"Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from <mjx-container ctxtmenu_counter=\"342\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper E Subscript normal upper F\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐸</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.016em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>F</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"196 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041039","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from 𝐸F, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.

Abstract Image

揭示超导体中基本涡旋引脚的微观机制
涡流夹持是决定实用超导体临界电流的关键因素,也是实现其多样化应用的关键因素。然而,长期以来,涡旋钉扎的内在机制一直难以捉摸,缺乏清晰的微观解释。在这里,我们利用高分辨率扫描隧道显微镜研究了层状铁硅基超导体中点缺陷诱导的单涡旋针销现象。我们发现,缺陷与涡旋的相互作用促使低能涡旋束缚态远离𝐸F,从而产生了一个 "迷你 "间隙,有效地降低了系统能量并增强了针销作用。通过测量局部态密度,我们直接获得了基本引脚能量,并通过引脚能量的空间梯度估算了引脚力。结果与块体临界电流测量结果一致。此外,我们还证明了包含缺陷-涡旋相互作用的一般微观量子模型可以自然地捕捉到我们的观察结果。这表明,与未针刺涡旋相比,针刺涡旋核心附近的局部配对实际上是增强的,这超出了非超导区域针刺涡旋的传统理解。因此,我们的研究揭示了超导体中涡旋引脚的一般微观机制,并为增强实用超导体的临界电流提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信