Guillermo Ballesteros, Thomas Konstandin, Alejandro Pérez Rodríguez, Mathias Pierre, Julián Rey
{"title":"Non-Gaussian tails without stochastic inflation","authors":"Guillermo Ballesteros, Thomas Konstandin, Alejandro Pérez Rodríguez, Mathias Pierre, Julián Rey","doi":"10.1088/1475-7516/2024/11/013","DOIUrl":null,"url":null,"abstract":"We show, both analytically and\nnumerically,\nthat\nnon-Gaussian tails in the probability density function of curvature perturbations arise in ultra-slow-roll inflation from the <italic toggle=\"yes\">δN</italic> formalism, without invoking stochastic inflation. Previously reported discrepancies between both approaches are a consequence of not correctly accounting for momentum perturbations. Once they are taken into account, both approaches agree to an excellent degree. The shape of the tail depends strongly on the phase space of inflation.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/013","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show, both analytically and
numerically,
that
non-Gaussian tails in the probability density function of curvature perturbations arise in ultra-slow-roll inflation from the δN formalism, without invoking stochastic inflation. Previously reported discrepancies between both approaches are a consequence of not correctly accounting for momentum perturbations. Once they are taken into account, both approaches agree to an excellent degree. The shape of the tail depends strongly on the phase space of inflation.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.