Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, Jan von Delft
{"title":"Emergent Properties of the Periodic Anderson Model: A High-Resolution, Real-Frequency Study of Heavy-Fermion Quantum Criticality","authors":"Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, Jan von Delft","doi":"10.1103/physrevx.14.041036","DOIUrl":null,"url":null,"abstract":"We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster impurity solver. The PAM describes itinerant <mjx-container ctxtmenu_counter=\"273\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons hybridizing with a lattice of localized <mjx-container ctxtmenu_counter=\"274\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of <mjx-container ctxtmenu_counter=\"275\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> spins by <mjx-container ctxtmenu_counter=\"276\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> electrons breaks down, so that <mjx-container ctxtmenu_counter=\"277\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> excitations change their character from somewhat itinerant to mainly localized, while <mjx-container ctxtmenu_counter=\"278\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> excitations remain itinerant. Building on <span>Phys. Rev. Lett.</span> <b>101</b>, 256404 (2008), which interpreted the KB transition as an orbital-selective Mott transition, we here elucidate its nature in great detail by performing a high-resolution, real-frequency study of various dynamical quantities (susceptibilities, self-energies, and spectral functions). NRG allows us to study the quantum critical regime governed by the QCP and located between two temperature scales, <mjx-container ctxtmenu_counter=\"279\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"inequality\" data-semantic-speech=\"upper T Subscript upper F upper L Baseline less than upper T Subscript upper N upper F upper L\" data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\" data-semantic-type=\"relseq\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.048em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c style=\"padding-top: 0.657em;\">L</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,<\" data-semantic-parent=\"7\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c><</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"4\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.048em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c style=\"padding-top: 0.657em;\">L</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>. In this regime, we find fingerprints of non-Fermi-liquid (NFL) behavior in several dynamical susceptibilities. Surprisingly, CDMFT self-consistency is essential to stabilize the QCP and the NFL regime. The Fermi-liquid (FL) scale <mjx-container ctxtmenu_counter=\"280\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T Subscript upper F upper L\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.048em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c style=\"padding-top: 0.657em;\">L</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> decreases toward and vanishes at the KB QCP; at temperatures below <mjx-container ctxtmenu_counter=\"281\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper T Subscript upper F upper L\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.048em;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">F</mjx-c><mjx-c style=\"padding-top: 0.657em;\">L</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container>, FL behavior emerges. At <mjx-container ctxtmenu_counter=\"282\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"equality\" data-semantic-speech=\"upper T equals 0\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑇</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c>0</mjx-c></mjx-mn></mjx-math></mjx-container>, we find the following properties. The KB transition is continuous. The <mjx-container ctxtmenu_counter=\"283\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> quasiparticle weight decreases continuously as the transition is approached from either side, vanishing only at the KB QCP. Therefore, the quasiparticle weight of the <mjx-container ctxtmenu_counter=\"284\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> band is nonzero not only in the Kondo phase, but also in the RKKY phase; hence, the FL quasiparticles comprise <mjx-container ctxtmenu_counter=\"285\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"c\" data-semantic-type=\"identifier\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-math></mjx-container> <i>and</i> <mjx-container ctxtmenu_counter=\"286\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> electrons in both phases. The Fermi surface (FS) volumes in the two phases differ, implying a FS reconstruction at the KB QCP. Whereas the large-FS Kondo phase has a two-band structure as expected, the small-FS RKKY phase unexpectedly has a three-band structure. We provide a detailed analysis of quasiparticle properties of both the Kondo and, for the first time, also the RKKY phase and uncover their differences. The FS reconstruction is accompanied by the appearance of a Luttinger surface on which the <mjx-container ctxtmenu_counter=\"287\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container> self-energy diverges. The volumes of the Luttinger and Fermi surfaces are related to the charge density by a generalized Luttinger sum rule. We interpret the small FS volume and the emergent Luttinger surface as evidence for <mjx-container ctxtmenu_counter=\"288\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"f\" data-semantic-type=\"identifier\"><mjx-c>𝑓</mjx-c></mjx-mi></mjx-math></mjx-container>-electron fractionalization in the RKKY phase. Finally, we compute the temperature dependence of the Hall coefficient and the specific heat, finding good qualitative agreement with experiments.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"105 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.041036","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster impurity solver. The PAM describes itinerant 𝑐 electrons hybridizing with a lattice of localized 𝑓 electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of 𝑓 spins by 𝑐 electrons breaks down, so that 𝑓 excitations change their character from somewhat itinerant to mainly localized, while 𝑐 excitations remain itinerant. Building on Phys. Rev. Lett.101, 256404 (2008), which interpreted the KB transition as an orbital-selective Mott transition, we here elucidate its nature in great detail by performing a high-resolution, real-frequency study of various dynamical quantities (susceptibilities, self-energies, and spectral functions). NRG allows us to study the quantum critical regime governed by the QCP and located between two temperature scales, 𝑇FL<𝑇NFL. In this regime, we find fingerprints of non-Fermi-liquid (NFL) behavior in several dynamical susceptibilities. Surprisingly, CDMFT self-consistency is essential to stabilize the QCP and the NFL regime. The Fermi-liquid (FL) scale 𝑇FL decreases toward and vanishes at the KB QCP; at temperatures below 𝑇FL, FL behavior emerges. At 𝑇=0, we find the following properties. The KB transition is continuous. The 𝑓 quasiparticle weight decreases continuously as the transition is approached from either side, vanishing only at the KB QCP. Therefore, the quasiparticle weight of the 𝑓 band is nonzero not only in the Kondo phase, but also in the RKKY phase; hence, the FL quasiparticles comprise 𝑐and𝑓 electrons in both phases. The Fermi surface (FS) volumes in the two phases differ, implying a FS reconstruction at the KB QCP. Whereas the large-FS Kondo phase has a two-band structure as expected, the small-FS RKKY phase unexpectedly has a three-band structure. We provide a detailed analysis of quasiparticle properties of both the Kondo and, for the first time, also the RKKY phase and uncover their differences. The FS reconstruction is accompanied by the appearance of a Luttinger surface on which the 𝑓 self-energy diverges. The volumes of the Luttinger and Fermi surfaces are related to the charge density by a generalized Luttinger sum rule. We interpret the small FS volume and the emergent Luttinger surface as evidence for 𝑓-electron fractionalization in the RKKY phase. Finally, we compute the temperature dependence of the Hall coefficient and the specific heat, finding good qualitative agreement with experiments.
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.