Dukula De Alwis Jayasinghe, Yinlin Chen, Jiangnan Li, Justyna M. Rogacka, Meredydd Kippax−Jones, Wanpeng Lu, Sergei Sapchenko, Jinyue Yang, Sarayute Chansai, Tianze Zhou, Lixia Guo, Yujie Ma, Longzhang Dong, Daniil Polyukhov, Lutong Shan, Yu Han, Danielle Crawshaw, Xiangdi Zeng, Zhaodong Zhu, Lewis Hughes, Mark D. Frogley, Pascal Manuel, Svemir Rudić, Yongqiang Cheng, Christopher Hardacre, Martin Schröder, Sihai Yang
{"title":"A Flexible Phosphonate Metal–Organic Framework for Enhanced Cooperative Ammonia Capture","authors":"Dukula De Alwis Jayasinghe, Yinlin Chen, Jiangnan Li, Justyna M. Rogacka, Meredydd Kippax−Jones, Wanpeng Lu, Sergei Sapchenko, Jinyue Yang, Sarayute Chansai, Tianze Zhou, Lixia Guo, Yujie Ma, Longzhang Dong, Daniil Polyukhov, Lutong Shan, Yu Han, Danielle Crawshaw, Xiangdi Zeng, Zhaodong Zhu, Lewis Hughes, Mark D. Frogley, Pascal Manuel, Svemir Rudić, Yongqiang Cheng, Christopher Hardacre, Martin Schröder, Sihai Yang","doi":"10.1021/jacs.4c12430","DOIUrl":null,"url":null,"abstract":"Ammonia (NH<sub>3</sub>) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO<sub>2</sub> each year. Efforts to produce green NH<sub>3</sub> are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal–organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH<sub>3</sub>. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH<sub>3</sub> at ppm levels at elevated temperatures (100–220 °C) even under humid conditions. A remarkable NH<sub>3</sub> uptake of 4.76 mmol g<sup>–1</sup> at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH<sub>3</sub> to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"22 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12430","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia (NH3) production in 2023 reached 150 million tons and is associated with potential concomitant production of up to 500 million tons of CO2 each year. Efforts to produce green NH3 are compromised since it is difficult to separate using conventional condensation chillers, but in situ separation with minimal cooling is challenging. While metal–organic framework materials offer some potential, they are often unstable and decompose in the presence of caustic and corrosive NH3. Here, we address these challenges by developing a pore-expansion strategy utilizing the flexible phosphonate framework, STA-12(Ni), which shows exceptional stability and capture of NH3 at ppm levels at elevated temperatures (100–220 °C) even under humid conditions. A remarkable NH3 uptake of 4.76 mmol g–1 at 100 μbar (equivalent to 100 ppm) is observed, and in situ neutron powder diffraction, inelastic neutron scattering, and infrared microspectroscopy, coupled with modeling, reveal a pore expansion from triclinic to a rhombohedral structure on cooperative binding of NH3 to unsaturated Ni(II) sites and phosphonate groups. STA-12(Ni) can be readily engineered into pellets or monoliths without losing adsorption capacity, underscoring its practical potential.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.