Zhan Si, Deguang Liu, Wan Nie, Jingjing Hu, Chen Wang, Tingting Jiang, Haizhu Yu, Yao Fu
{"title":"Data-Based Prediction of Redox Potentials via Introducing Chemical Features into the Transformer Architecture","authors":"Zhan Si, Deguang Liu, Wan Nie, Jingjing Hu, Chen Wang, Tingting Jiang, Haizhu Yu, Yao Fu","doi":"10.1021/acs.jcim.4c01299","DOIUrl":null,"url":null,"abstract":"Rapid and accurate prediction of basic physicochemical parameters of molecules will greatly accelerate the target-orientated design of novel reactions and materials but has been long challenging. Herein, a chemical language model-based deep learning method, TransChem, has been developed for the prediction of redox potentials of organic molecules. Embedding an effective molecular characterization (combining spatial and electronic features), a nonlinear molecular messaging approach (Mol-Attention), and a perturbation learning method, TransChem, shows high accuracy in predicting the redox potential of organic radicals comprising over 100,000 data (<i>R</i><sup>2</sup> > 0.97, MAE <0.09 V) and is generalized to the smaller 2,1,3-benzothiadiazole data set (<3000 data points) and electron affinity data set (660 data) with low MAE of 0.07 V and 0.18 eV, respectively. In this context, a self-developed data set, i.e., the oxidation potential (OP) of a full-space disubstituted phenol data set (OPP-data set, total set: 74,529), has been predicted by TransChem with a high-throughput, and active learning strategy. The rapid and reliable prediction of OP could hopefully accelerate the screening of plausible reagents in highly selective cross-coupling of phenol derivatives. This study presents an important attempt to guide language modeling with chemical knowledge, while TransChem demonstrates state-of-the-art (SOTA) predictive performance on redox potential prediction benchmark data sets for its better understanding of molecular design and conformational relationships.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"148 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01299","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and accurate prediction of basic physicochemical parameters of molecules will greatly accelerate the target-orientated design of novel reactions and materials but has been long challenging. Herein, a chemical language model-based deep learning method, TransChem, has been developed for the prediction of redox potentials of organic molecules. Embedding an effective molecular characterization (combining spatial and electronic features), a nonlinear molecular messaging approach (Mol-Attention), and a perturbation learning method, TransChem, shows high accuracy in predicting the redox potential of organic radicals comprising over 100,000 data (R2 > 0.97, MAE <0.09 V) and is generalized to the smaller 2,1,3-benzothiadiazole data set (<3000 data points) and electron affinity data set (660 data) with low MAE of 0.07 V and 0.18 eV, respectively. In this context, a self-developed data set, i.e., the oxidation potential (OP) of a full-space disubstituted phenol data set (OPP-data set, total set: 74,529), has been predicted by TransChem with a high-throughput, and active learning strategy. The rapid and reliable prediction of OP could hopefully accelerate the screening of plausible reagents in highly selective cross-coupling of phenol derivatives. This study presents an important attempt to guide language modeling with chemical knowledge, while TransChem demonstrates state-of-the-art (SOTA) predictive performance on redox potential prediction benchmark data sets for its better understanding of molecular design and conformational relationships.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.