Some estimates for octonion transform

Q2 Mathematics
A. Serhir, N. Safouane, A. Achak, A. El Hyat
{"title":"Some estimates for octonion transform","authors":"A. Serhir,&nbsp;N. Safouane,&nbsp;A. Achak,&nbsp;A. El Hyat","doi":"10.1007/s11565-024-00566-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper extends classical approximation theory by establishing Bernstein’s inequality and Jackson’s direct and inverse theorems for the Octonion transform, focusing on functions with a bounded spectrum. Jackson’s inequality bounds the best polynomial approximation of a function based on its smoothness, while Bernstein’s inequality relates the maximum modulus of a polynomial and its derivative on the unit disk. The paper adapts these concepts to the context of octonions.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00566-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends classical approximation theory by establishing Bernstein’s inequality and Jackson’s direct and inverse theorems for the Octonion transform, focusing on functions with a bounded spectrum. Jackson’s inequality bounds the best polynomial approximation of a function based on its smoothness, while Bernstein’s inequality relates the maximum modulus of a polynomial and its derivative on the unit disk. The paper adapts these concepts to the context of octonions.

八离子变换的一些估计值
本文通过建立伯恩斯坦不等式和杰克逊八叉变换的正定理和逆定理,扩展了经典的近似理论,并将重点放在有界谱的函数上。杰克逊不等式根据函数的平滑度对函数的最佳多项式近似进行了约束,而伯恩斯坦不等式则将多项式的最大模与其在单位盘上的导数联系起来。本文将这些概念应用于八元数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信