Qi Jiang;Jiuhou Lei;Xinan Yue;Dexin Ren;Fuqing Huang;Xiaoli Luan;Guozhu Li
{"title":"Electron density profile derived from ionogram using ray tracing inversion method","authors":"Qi Jiang;Jiuhou Lei;Xinan Yue;Dexin Ren;Fuqing Huang;Xiaoli Luan;Guozhu Li","doi":"10.1029/2024RS008086","DOIUrl":null,"url":null,"abstract":"The ionosonde is widely used for detecting electron density profiles below the F2 peak altitude. Extracting precise profiles from ionograms is crucial, as it serves as a significant data source for ionospheric studies and applications. In our study, we utilized the ray tracing profile inversion method (RTPI) to derive more realistic electron density profiles from the ionosonde observations. By comparing the electron density profiles inverted by RTPI method with and without geomagnetic field against the profiles observed by Incoherent Scatter Radar (ISR) plasma lines, we validated the high precision of the RTPI with magnetic field effect method. The results showed that the average height difference and average peak height difference between profiles inverted by RTPI and plasma line observations are less than 10 and 5 km, respectively. Additionally, we quantified the errors associated with the geomagnetic field effect. It would cause an ~8—10 km overestimation in true height and a ~ 10%—15% underestimation in electron density if the geomagnetic field effect is not considered. These errors induced by the magnetic field accumulate with the frequency of the radio waves. Moreover, we conducted a comparative analysis of simulated echo traces using profiles with different E-layer shapes. It was demonstrated that the key parameters of the bottom structure have a significant impact on ionogram retrieval, while the E-layer shape has negligible influence on inversion. Furthermore, we analyzed echo traces simulated using ray tracing with and without collision. The collision effect has weak effect on the delay of the radio waves.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 10","pages":"1-13"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747577/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ionosonde is widely used for detecting electron density profiles below the F2 peak altitude. Extracting precise profiles from ionograms is crucial, as it serves as a significant data source for ionospheric studies and applications. In our study, we utilized the ray tracing profile inversion method (RTPI) to derive more realistic electron density profiles from the ionosonde observations. By comparing the electron density profiles inverted by RTPI method with and without geomagnetic field against the profiles observed by Incoherent Scatter Radar (ISR) plasma lines, we validated the high precision of the RTPI with magnetic field effect method. The results showed that the average height difference and average peak height difference between profiles inverted by RTPI and plasma line observations are less than 10 and 5 km, respectively. Additionally, we quantified the errors associated with the geomagnetic field effect. It would cause an ~8—10 km overestimation in true height and a ~ 10%—15% underestimation in electron density if the geomagnetic field effect is not considered. These errors induced by the magnetic field accumulate with the frequency of the radio waves. Moreover, we conducted a comparative analysis of simulated echo traces using profiles with different E-layer shapes. It was demonstrated that the key parameters of the bottom structure have a significant impact on ionogram retrieval, while the E-layer shape has negligible influence on inversion. Furthermore, we analyzed echo traces simulated using ray tracing with and without collision. The collision effect has weak effect on the delay of the radio waves.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.