Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube

IF 2.2 3区 工程技术 Q2 MECHANICS
Mustafa Turkyilmazoglu
{"title":"Long wavelength analysis amendment on the cilia beating assisted peristalsis in a tube","authors":"Mustafa Turkyilmazoglu","doi":"10.1007/s00162-024-00721-1","DOIUrl":null,"url":null,"abstract":"<div><p>This work delves into the peristaltic rheology of two-wave sinusoidal cilia beating within a tubular pipe. Cilia movement drives the dynamic phenomenon of peristaltic fluid flow. Employing the traditional long-wavelength lubrication assumption, the flow equations are transformed into similarity form. The main objective is to take into account the true peristaltic-ciliary motion effects. We then derive analytical solutions for the radial and axial velocities of fluid particles within the tube. Notably, at this leading approximation level, the impacts of cilia beating are negligible, suggesting the motion is solely driven by peristaltic surface waves. However, analyzing the correction to the long-wavelength limit reveals the emergence of ciliated boundary effects through their largely eccentric elliptic paths. This correction enables us to extract expressions for the pressure gradient, stream function, axial and radial velocities, resultant pressure rise, and drag force, all based on the time-averaged mean flow rate across the pipe. Finally, we present a general discussion of fluid rheology due to cilia-assisted peristaltic motion, illustrated with informative graphical displays. It is shown that the drag force on the tube walls owing to the cilia beating waves in biology or biomedical applications necessitates addition of correction terms to the traditional long-wavelength adoption.</p></div>","PeriodicalId":795,"journal":{"name":"Theoretical and Computational Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00162-024-00721-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work delves into the peristaltic rheology of two-wave sinusoidal cilia beating within a tubular pipe. Cilia movement drives the dynamic phenomenon of peristaltic fluid flow. Employing the traditional long-wavelength lubrication assumption, the flow equations are transformed into similarity form. The main objective is to take into account the true peristaltic-ciliary motion effects. We then derive analytical solutions for the radial and axial velocities of fluid particles within the tube. Notably, at this leading approximation level, the impacts of cilia beating are negligible, suggesting the motion is solely driven by peristaltic surface waves. However, analyzing the correction to the long-wavelength limit reveals the emergence of ciliated boundary effects through their largely eccentric elliptic paths. This correction enables us to extract expressions for the pressure gradient, stream function, axial and radial velocities, resultant pressure rise, and drag force, all based on the time-averaged mean flow rate across the pipe. Finally, we present a general discussion of fluid rheology due to cilia-assisted peristaltic motion, illustrated with informative graphical displays. It is shown that the drag force on the tube walls owing to the cilia beating waves in biology or biomedical applications necessitates addition of correction terms to the traditional long-wavelength adoption.

Abstract Image

管内纤毛跳动辅助蠕动的长波长分析修正案
这项研究深入探讨了管状管道内双波正弦纤毛跳动的蠕动流变学。纤毛运动推动了蠕动流体流动的动态现象。采用传统的长波长润滑假设,将流动方程转化为相似形式。主要目的是考虑到真正的蠕动-纤毛运动效应。然后,我们得出了管内流体颗粒径向和轴向速度的解析解。值得注意的是,在这一领先近似水平上,纤毛跳动的影响可以忽略不计,这表明运动完全由蠕动表面波驱动。然而,通过分析对长波长极限的修正,我们发现纤毛的边界效应通过其偏心的椭圆路径显现出来。这种修正使我们能够提取压力梯度、流函数、轴向和径向速度、结果压力上升和阻力的表达式,所有这些都基于管道上的时间平均平均流速。最后,我们对纤毛辅助蠕动运动引起的流体流变学进行了一般性讨论,并用翔实的图表进行了说明。研究表明,在生物或生物医学应用中,由于纤毛跳动波对管壁产生的阻力,有必要在传统的长波长采用法中添加修正项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.90%
发文量
38
审稿时长
>12 weeks
期刊介绍: Theoretical and Computational Fluid Dynamics provides a forum for the cross fertilization of ideas, tools and techniques across all disciplines in which fluid flow plays a role. The focus is on aspects of fluid dynamics where theory and computation are used to provide insights and data upon which solid physical understanding is revealed. We seek research papers, invited review articles, brief communications, letters and comments addressing flow phenomena of relevance to aeronautical, geophysical, environmental, material, mechanical and life sciences. Papers of a purely algorithmic, experimental or engineering application nature, and papers without significant new physical insights, are outside the scope of this journal. For computational work, authors are responsible for ensuring that any artifacts of discretization and/or implementation are sufficiently controlled such that the numerical results unambiguously support the conclusions drawn. Where appropriate, and to the extent possible, such papers should either include or reference supporting documentation in the form of verification and validation studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信