Existence of solutions for fractional functional integral equations of Hadamard type via measure of noncompactness

Q2 Mathematics
Rakesh Kumar, Satish Kumar, Bhupander Singh, Hamid Reza Sahebi
{"title":"Existence of solutions for fractional functional integral equations of Hadamard type via measure of noncompactness","authors":"Rakesh Kumar,&nbsp;Satish Kumar,&nbsp;Bhupander Singh,&nbsp;Hamid Reza Sahebi","doi":"10.1007/s11565-024-00569-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the solvability for fractional functional integral equations of Hadamard-type within the Banach algebra <span>\\(C([1, c]), c &gt; 0\\)</span>. We utilize the Darbo’s fixed point theorem combined with the measure of non-compactness as the main tool. Notably, our existence results encompass and generalize various findings documented in previous literature. To demonstrate the applicability of our approach, we present a detailed example highlighting its effectiveness.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00569-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the solvability for fractional functional integral equations of Hadamard-type within the Banach algebra \(C([1, c]), c > 0\). We utilize the Darbo’s fixed point theorem combined with the measure of non-compactness as the main tool. Notably, our existence results encompass and generalize various findings documented in previous literature. To demonstrate the applicability of our approach, we present a detailed example highlighting its effectiveness.

通过非紧密性度量哈达玛德型分数函数积分方程解的存在性
本文研究在巴拿赫代数(C([1, c]), c >0\)中哈达玛型分数函数积分方程的可解性。我们利用 Darbo 定点定理结合非紧凑性度量作为主要工具。值得注意的是,我们的存在性结果包含并概括了以往文献中的各种发现。为了证明我们的方法的适用性,我们举了一个详细的例子来突出它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信