{"title":"Annihilators of power values of generalized skew derivations on Lie ideals in prime rings","authors":"C. Garg, B. Dhara","doi":"10.1007/s11565-024-00542-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a prime ring of characteristic different from 2, <span>\\(n\\ge 1\\)</span> a fixed integer, <i>C</i> the extended centroid of <i>R</i>, <i>F</i> a generalized skew derivation of <i>R</i> and <i>L</i> a Lie ideal of <i>R</i>. If there exists <span>\\(0 \\ne a \\in R\\)</span> such that <span>\\(a(F(xy)-yx)^{n}=0\\)</span> for all <span>\\(x,y\\in L\\)</span>, then <i>L</i> is central, unless <i>R</i> satisfies the standard polynomial identity <span>\\(s_4(x_1, \\ldots , x_4)\\)</span>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00542-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a prime ring of characteristic different from 2, \(n\ge 1\) a fixed integer, C the extended centroid of R, F a generalized skew derivation of R and L a Lie ideal of R. If there exists \(0 \ne a \in R\) such that \(a(F(xy)-yx)^{n}=0\) for all \(x,y\in L\), then L is central, unless R satisfies the standard polynomial identity \(s_4(x_1, \ldots , x_4)\).
让 R 是一个特征值不同于 2 的素环,(n\ge 1\ )是一个固定整数,C 是 R 的扩展中心点,F 是 R 的广义倾斜派生,L 是 R 的一个列理想。如果存在 \(0 ne a \in R\) such that \(a(F(xy)-yx)^{n}=0\) for all \(x,y\in L\), 那么 L 是中心的,除非 R 满足标准多项式特性 \(s_4(x_1,\ldots,x_4)\)。
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.