{"title":"Transverse Magnetic ENZ Resonators: Robustness and Optimal Shape Design","authors":"Robert V. Kohn, Raghavendra Venkatraman","doi":"10.1007/s00205-024-02023-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study certain “geometric-invariant resonant cavities” introduced by Liberal, Mahmoud, and Engheta in a 2016 Nature Communications paper. They are cylindrical devices modeled using the transverse magnetic reduction of Maxwell’s equations, so the mathematics is two-dimensional. The cross-section consists of a dielectric inclusion surrounded by an “epsilon-near-zero” (ENZ) shell. When the shell has just the right area, its interaction with the inclusion produces a resonance. Mathematically, the resonance is a nontrivial solution of a 2D divergence-form Helmoltz equation <span>\\(\\nabla \\cdot \\left( \\varepsilon ^{-1}(x,\\omega ) \\nabla u \\right) + \\omega ^2 \\mu u = 0\\)</span>, where <span>\\(\\varepsilon (x,\\omega )\\)</span> is the (complex-valued) dielectric permittivity, <span>\\(\\omega \\)</span> is the frequency, <span>\\(\\mu \\)</span> is the magnetic permeability, and a homogeneous Neumann condition is imposed at the outer boundary of the shell. This is a nonlinear eigenvalue problem, since <span>\\(\\varepsilon \\)</span> depends on <span>\\(\\omega \\)</span>. Use of an ENZ material in the shell means that <span>\\(\\varepsilon (x,\\omega )\\)</span> is nearly zero there, so the PDE is rather singular. Working with a Lorentz model for the dispersion of the ENZ material, we put the discussion of Liberal et. al. on a sound foundation by proving the existence of the anticipated resonance when the loss parameter of the Lorentz model is sufficiently small. Our analysis is perturbative in character, using the implicit function theorem despite the apparently singular form of the PDE. While the existence of the resonance depends only on the area of the ENZ shell, its quality (that is, the rate at which the resonance decays) depends on the shape of the shell. It is therefore natural to consider an associated optimal design problem: what shape shell gives the slowest-decaying resonance? We prove that if the dielectric inclusion is a ball then the optimal shell is a concentric annulus. For an inclusion of any shape, we study a convex relaxation of the design problem using tools from convex duality. Finally, we discuss the conjecture that our relaxed problem amounts to considering homogenization-like limits of nearly optimal designs.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02023-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study certain “geometric-invariant resonant cavities” introduced by Liberal, Mahmoud, and Engheta in a 2016 Nature Communications paper. They are cylindrical devices modeled using the transverse magnetic reduction of Maxwell’s equations, so the mathematics is two-dimensional. The cross-section consists of a dielectric inclusion surrounded by an “epsilon-near-zero” (ENZ) shell. When the shell has just the right area, its interaction with the inclusion produces a resonance. Mathematically, the resonance is a nontrivial solution of a 2D divergence-form Helmoltz equation \(\nabla \cdot \left( \varepsilon ^{-1}(x,\omega ) \nabla u \right) + \omega ^2 \mu u = 0\), where \(\varepsilon (x,\omega )\) is the (complex-valued) dielectric permittivity, \(\omega \) is the frequency, \(\mu \) is the magnetic permeability, and a homogeneous Neumann condition is imposed at the outer boundary of the shell. This is a nonlinear eigenvalue problem, since \(\varepsilon \) depends on \(\omega \). Use of an ENZ material in the shell means that \(\varepsilon (x,\omega )\) is nearly zero there, so the PDE is rather singular. Working with a Lorentz model for the dispersion of the ENZ material, we put the discussion of Liberal et. al. on a sound foundation by proving the existence of the anticipated resonance when the loss parameter of the Lorentz model is sufficiently small. Our analysis is perturbative in character, using the implicit function theorem despite the apparently singular form of the PDE. While the existence of the resonance depends only on the area of the ENZ shell, its quality (that is, the rate at which the resonance decays) depends on the shape of the shell. It is therefore natural to consider an associated optimal design problem: what shape shell gives the slowest-decaying resonance? We prove that if the dielectric inclusion is a ball then the optimal shell is a concentric annulus. For an inclusion of any shape, we study a convex relaxation of the design problem using tools from convex duality. Finally, we discuss the conjecture that our relaxed problem amounts to considering homogenization-like limits of nearly optimal designs.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.